ENVIRONMENTAL RADIOACTIVITY
Academic Year 2019/2020 - 1° Year - Curriculum PHYSICS APPLIED TO CULTURAL HERITAGE, ENVIRONMENT AND MEDICINE and Curriculum NUCLEAR PHENOMENA AND THEIR APPLICATIONSCredit Value: 6
Scientific field: FIS/01 - Experimental physics
Taught classes: 42 hours
Term / Semester: 1°
Learning Objectives
The course is aimed at providing the student with the basic knowledge on radioactivity and the implications in the environmental field: knowledge of the decay mechanisms; knowledge of the properties of ionizing radiation; knowledge of the effects in the matter crossed by ionizing radiation; knowledge of ionizing radiation sources in the environment; knowledge of environmental radioactivity monitoring systems; knowledge of the basic concepts of radio-protection.
Knowledge and understanding.
Critical understanding of the most advanced developments of Modern Physics, both theoretical and experimental, and their interrelations, also across different subjects.
Remarkable acquaintance with the scientific method, understanding of nature, and of the research in Physics.
Applying knowledge and understanding
Ability to identify the essential elements in a phenomenon, in terms of orders of magnitude and approximation level, and being able to perform the required approximations
Ability to use analogy as a tool to apply known solutions to new problems (problem solving).
Ability to plan and apply experimental and theoretical procedures to solve problems in academic or applied research, or to improve existing results.
Making judgements
Awareness of security problems in laboratory activities.
Ability to convey own interpretations of physical phenomena, when discussing within a research team.
Communication skills.
Ability to discuss about advanced physical concepts, both in Italian and in English..
Ability to present one's own research activity or a review topic both to an expert and to an non-expert audience.
Learning skills.
Ability to acquire adequate tools for the continuous update of one's knowledge.
Ability to exploit databases and bibliographical and scientific resources to extract information and suggestions to better frame and develop one's study and research activity.
Course Structure
Lectures with application examples. Seminars of external experts.
Detailed Course Content
The origin of the elements: unstable elements, energy balance, Q-value. Decay mechanisms: alpha, beta and gamma decays, neutron production, fission products. Recalls of the mechanisms of radiation-matter interaction. Direct ionizing radiation and indirectly ionizing radiation. Law of radioactive decay: probability of decay and average life, half-life, radioactive equilibrium. Natural decay chains. Natural sources and anthropogenic sources of radiation
ionizing. The Radon: implications and applications. Introduction to particle detectors: detection of charged particles, gamma radiation detection, neutron detection, detection efficiency. Monitoring of radioactivity: activity of a source, identification of radionuclide emitters, quantification of the concentration of radionuclides in environmental matrices, experimental monitoring techniques. Dosimetry and radiation protection elements: radiometric quantities and dosimetric quantities, effects of the interaction of ionizing radiations in the biological matter, absorption and shielding, outline of the regulation of dose limits. Notes on the techniques of control and reclamation of environmental matrices contaminated by radionuclides. Radioactive waste: production, classification, management, destination, examples. Radwaste characterization and monitoring, detectors and techniques. The DMNR project, the MICADO project. Low-cost sensors for gamma radiation monitoring (SciFi). Low-cost sensors for neutron radiation monitoring (SiLiF). SiLiF sensors test results in the lab and on the field. Laboratory exercise with SiLiF sensors.
Textbook Information
Please contact the lecturer