EXPERIMENTAL METHODS FOR NUCLEAR PHYSICS
Anno accademico 2017/2018 - 1° anno - Curriculum NUCLEAR AND PARTICLE PHYSICS e Curriculum NUCLEAR PHENOMENA AND THEIR APPLICATIONSCrediti: 6
SSD: FIS/01 - FISICA SPERIMENTALE
Organizzazione didattica: 150 ore d'impegno totale, 108 di studio individuale, 42 di lezione frontale
Semestre: 2°
Obiettivi formativi
Apprendere le principali metodologie sperimentali per l’analisi dei dati da esperimenti di fisica nucleare
Prerequisiti richiesti
Corsi introduttivi di Fisica Nucleare
Frequenza lezioni
obbligatoria
Contenuti del corso
Programma del corso:
Experimental errors in nuclear physics
Error estimation - Statistical errors – Statistics of counting – Mean and variance - Systematic errors – Examples from realistic nuclear physics experiments – Combining results from different experiments – Significance tests
Probability distributions and their use in nuclear physics
Probability – Parameter estimation – Hypothesis testing – Binomial distribution – Poisson distribution – Gaussian distribution – Landau-Vavilov distribution and the high energy tail in the energy loss of charged particles - Other distributions of interest for nuclear physics - Application to specific nuclear physics phenomena – Particle counting – Time between successive random events – Dead time of a detector – Occupancy for a segmented detector – Photoelectrons in a photomultiplier - Uncorrelated variables – Distributions in two or more dimensions – Error matrix manipulation
Parameter fitting
Parameter estimation – Interpretation of estimates – The method of moments – Maximum likelihood method – Least squares method – Minimization processes – Examples of fitting procedures – Straight line fit with errors on x and y – Kinematic fitting – Use of constraints – Hypothesis testing
Background subtraction
Invariant mass spectra – Estimation of combinatorial background – Fit by smooth mathematical functions – Combinatorial background – Methods and algorithms for background subtraction in high multiplicity events - The event mixing method - The track rotation method – The like sign method
Methods for data acquisition and analysis
Multiparametric data acquisition systems – Multiparametric analysis - Trigger design and event selection – Event filtering – Classification of events by centrality and reaction plane determination -
Tracking and pattern recognition methods
Pattern recognition methods – Hough transform and its application to RICH detectors – Tracking methods – Track recognition and reconstruction – Simple combinatorial methods - Primary and secondary vertex finding – Kalman Filter method – Shower analysis for calorimeters – Shape analysis – Jet reconstruction
Neural network methods
Artificial neural networks (ANN) – Implementation of ANN by the ROOT package - Applications of ANN to problems in nuclear physics: particle identification, particle tracking, signal reconstruction, forecast methods.
Monte Carlo methods and detector simulation
Basic of Monte Carlo methods – Random numbers and sequences - Monte Carlo methods and application to nuclear physics – Simulation techniques for the evaluation of detector properties - Detector acceptance and efficiency - Simulation of physical processes and detector response – Implementation and use of simulation codes – The GEANT tool – Examples and applications in nuclear physics and related areas
Testi di riferimento
L.Lyons, Statistics for nuclear and particle physicists, Cambridge University Press
Useful additional references for the topics discussed will be provided along the lectures.
Programmazione del corso
* | Argomenti | Riferimenti testi | |
---|---|---|---|
1 | * | Un lavoro personalizzato di analisi che utilizzi qualcuno dei metodi illustrati durante il corso |
N.B. La conoscenza degli argomenti contrassegnati con l'asterisco è condizione necessaria ma non sufficiente per il superamento dell'esame. Rispondere in maniera sufficiente o anche più che sufficiente alle domande su tali argomenti non assicura, pertanto, il superamento dell'esame.
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
Presentazione di una tesina scritta che riporti un lavoro di analisi/simulazione condotto con qualcuno dei metodi illustrati durante il corso
Discussione orale
Esempi di domande e/o esercizi frequenti
Metodi di simulazione Monte Carlo - SImulazione con package GEANT - Reti neurali - Digital Pulse Processing