FISICA NUCLEARE DELLE ALTE ENERGIE

Anno accademico 2017/2018 - 2° anno - Curriculum FISICA NUCLEARE E SUB-NUCLEARE
Docente: Francesco RIGGI
Crediti: 6
SSD: FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
Organizzazione didattica: 150 ore d'impegno totale, 108 di studio individuale, 42 di lezione frontale
Semestre:

Obiettivi formativi

Apprendere le principali metodologie sperimentali per l’analisi dei dati da esperimenti di fisica nucleare


Prerequisiti richiesti

Corsi introduttivi di Fisica Nucleare


Frequenza lezioni

obbligatoria


Contenuti del corso

Introduction

Energetic regimes for nuclear collisions – Basic phenomenology for heavy ion nuclear collisions – The present status of the experimental facilities in high energy nuclear physics

Reconstruction of collision events

Kinematics of a nuclear collision – The low energy and light particle case – Three-body processes – Multibody collisions – Study of the final state – Kinematical variables in high energy nuclear and particle physics – Rapidity, pseudorapidity, transverse momentum and transverse mass – Transformation of variables – Kinematical acceptance - Reconstruction of decaying particles – Dalitz plots - Invariant mass spectra and identification of decaying particles – Armenteros-Podolanski plot - Background evaluation – Methods and algorithms for background subtraction in high multiplicity events - Event mixing techniques, track rotation, like-sign methods – Event generators for pp and heavy ion collisions – Use of event generators in nuclear physics - Event characterization – Centrality of collision events – Reaction plane and its determination.

High-energy nucleon-nucleon collisions

Basic phenomenology of Nucleon-Nucleon collisions – Particle production – Inclusive experimental distributions – Hard and soft processes – Event generators for nucleon-nucleon collisions – Examples from PITHYA event generator

Heavy ion collisions from intermediate to relativistic energy

Particle multiplicity – Energy density – Excitation energy – Central and peripheral collisions – Global variables - Event centrality determination – Nuclear matter at high density – Multifragmentation – Inclusive and exclusive experiments – Collective flow – Reaction plane – Subthreshold particle production – Phase transitions at intermediate energy – Particle production from intermediate to relativistic energies – Distributions and relative abundances – Rapidity and transverse momentum distributions – Inelasticity – Pion and kaon production – Strangeness production

Ultra-relativistic heavy ion collisions

Nuclear stopping – Energy density – Bjorken estimate – Geometrical description of nuclear collisions – Glauber model – Particle production – Collective effects – Hard probes – Jet quenching – Simulation of high energy nucleus-nucleus collisions – Event generators for heavy ion collisions – Examples from HIJING event generator

Hadronic matter and quark-gluon-plasma

QCD and QGP – The problem of quark deconfinement – Chiral symmetry – Quark matter – Search for experimental evidence of quark matter – Astrophysical aspects – Neutron stars – Strangelets – Links to cosmic ray physics

Signatures of QGP in heavy ion collisions

Dilepton production – Drell-Yann processes – J/Psi suppression – Strangeness production – Multistrange hyperons – Direct photon emission – Intensity interferometry and space-time size of nuclear sources – Event-by-event physics – Correlations and fluctuations

Recent results from high energy nuclear physics

Review of recent results at RHIC and LHC – Main results and perspectives – The upgrade of the LHC experiments and the future at LHC

 

Particle detectors in high energy nuclear physics

Particle detection in nuclear physics – General properties: operating strategies, signal information, calibration, energy, space and time resolution – Energy measurements – Timing measurements – Geometrical acceptance – Detector efficiency – Simulation techniques for the evaluation of acceptance and efficiency – Basic phenomenology of a nuclear collision - Charged particle multiplicity at low energy, intermediate energy and ultrarelativistic regimes – Individual detectors and multidetectors – Typical examples of multidetectors at intermediate energies – Examples of multidetectors at high energy - Tracking detectors - Vertex detectors – Detectors for particle identification.

 

Adavanced detection techniques

Recent developments in gas detectors – Drift chambers – Time Projection Chambers - Multigap resistive plate chambers – Development of silicon detectors – Microstrip detectors – Silicon drift detectors – Hybrid and monolithic pixel detectors – Silicon vertex detectors – Radiation damage in silicon detectors – Cerenkov Ring Detectors – Electromagnetic and hadronic calorimeters – Transition radiation Detectors - Scintillation detectors with wavelength shifter fibers – Development in photosensors: Avalanche photodiodes and Silicon photomultipliers.


Testi di riferimento

Useful references for the topics discussed will be provided along the lectures.



Programmazione del corso

 *ArgomentiRiferimenti testi
1*Un lavoro personalizzato di analisi che utilizzi qualcuno dei metodi illustrati durante il corso 
* Conoscenze minime irrinunciabili per il superamento dell'esame.

N.B. La conoscenza degli argomenti contrassegnati con l'asterisco è condizione necessaria ma non sufficiente per il superamento dell'esame. Rispondere in maniera sufficiente o anche più che sufficiente alle domande su tali argomenti non assicura, pertanto, il superamento dell'esame.

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Presentazione di una tesina scritta che riporti un lavoro di analisi/simulazione condotto con qualcuno dei metodi illustrati durante il corso

Discussione orale


Esempi di domande e/o esercizi frequenti

Metodi di simulazione Monte Carlo - SImulazione con package GEANT - Reti neurali - Digital Pulse Processing