GENERAL RELATIVITY

Anno accademico 2019/2020 - 1° anno - Curriculum ASTROPHYSICS e Curriculum THEORETICAL PHYSICS
Docente: Alfio Maurizio BONANNO
Crediti: 6
SSD: FIS/05 - ASTRONOMIA E ASTROFISICA
Organizzazione didattica: 150 ore d'impegno totale, 108 di studio individuale, 42 di lezione frontale
Semestre:

Obiettivi formativi

Vedi testo inglese (il corso e' in inglese).


Modalità di svolgimento dell'insegnamento

Lezioni frontali, non sono previste ore di laboratorio.


Prerequisiti richiesti

Concetti basi di topologia e spazi vettoriali.


Frequenza lezioni

E' fortemente consigliata.


Contenuti del corso

Equivalence principle and its physical implications. Topological Manifolds. Differentiable manifolds. Vector fields and tangent bundle. Connections. Torsion tensor and Riemann tensor. Jacobi geodetic deviation equation. Geodesics. Geometrical formulation of the newtonian gravity. Lorentzian Manifolds. Killing equation and conservation laws in GR. LL hypersurfaces, generators and dynamics. Physical motivation for the Einstein’s field equations. 2+2 formalism and solutions: RN, Schwarzschild, de Sitter. Event Horizon in static spacetimes. Birkhoff theorem. Eddington-Finkelstein coordinates. Kruskal coordinates. Schwarzschild maximal extension. Penrose conformal mapping. RN maximal extension. Geodesic motion in RN. Thorne’s wormhole. Matter matters: TOV equations. Stationary spacetimes. ZAMO observers. Event horizon in stationary spacetimes. Kerr solution in Boyer-Lindquist coordinates. Ergoregion and Event Horizon. Penrose’s extraction mechanism. Kerr maximal extension. No-Hair theorem. Dynamics of LL hypersurfaces in generic spacetimes: Raychaudhuri equation. BH rigidity. The zeroth Law of BH dynamics. Definition of EH in general spacetime. Non stationary spacetimes: accretion and evaporation. Teleological properties of the EH. Hawking’s area theorem and second Law of BH dynamics. First law of BH (thermo) dynamics. QFT in curved spacetime. Quantum creation of particles in an expanding universe. Thermal emission from a BH. Hamiltonian formalism and WdW equation.


Testi di riferimento

E. Poisson, A Relativist's Toolkit, The Mathematics of Black-Hole Mechanics, Cambridge UP

R. Wald, General Relativity, Chicago UP

Introducing Eintein's Relativity: from tensors to gravitational waves. Ray d'Inverno. Oxford UP

S. Weinberg, Gravitation and Cosmology, New York: John Wiley and Sons (1972).



Programmazione del corso

 ArgomentiRiferimenti testi
1Equivalence principle and physical foundationsS. Weinberg, Gravitation and Cosmology, New York: John Wiley and Sons (1972). 
2Mathematical tools Introducing Eintein's Relativity: from tensors to gravitational waves. Ray d'Inverno. Oxford UP 
3Exact solutions R. Wald, General Relativity, Chicago UP 
4BH theoryE. Poisson, A Relativist's Toolkit, The Mathematics of Black-Hole Mechanics, Cambridge UP 

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

L'esame e' orale. Oral Exam.


Esempi di domande e/o esercizi frequenti

Computations of Lie derivatives of various tensorial quantities. Discussion about symmetries and conservation laws in General Relativity. Study of the conformal infinity of the Kerr metric. Determination of the EH in a non-static spacetime.