QUANTUM INFORMATION

Anno accademico 2018/2019 - 2° anno - Curriculum CONDENSED MATTER PHYSICS e Curriculum THEORETICAL PHYSICS
Docente: Giuseppe FALCI
Crediti: 6
SSD: FIS/03 - FISICA DELLA MATERIA
Organizzazione didattica: 150 ore d'impegno totale, 108 di studio individuale, 42 di lezione frontale
Semestre:

Obiettivi formativi

Il corso introduce i concetti di meccanica quantistica avanzata e il background teorico necessario allo studio della dinamica quantistica di elettroni e fotoni, manipolati in sistemi/architetture fisici coerenti. Ciò è di grande interesse per la ricerca fondamentale, dal significato della fisica quantistica alla termodinamica quantistica e alla gravità, ma attualmente riveste forte interesse anche dal punto di vista applicativo, nel settore emergente delle "Tecnologie Quantistiche" (computazione e comunicazione quantistica, controllo coerente della dinamica, sensing e metrologia).

  • Conoscenza e capacità di comprensione (knowledge and understanding) – Conoscenza delle principali idee e tecniche teoriche/numeriche utilizzate per rappresentare sitemi quantistici complessi e studiarne la dinamica coerente. Conoscenza dei principi di funzionamento dei sistemi fisici attualmente utilizzati nella ricerca.
  • Capacità di applicare conoscenza e comprensione (applying knowledge and understanding) – Capacità di applicare tecniche teoriche di base e approssimazioni per l'analisi e la simulazione di processi dinamici in sistemi quantistici. Capacità di familiarizzare con le nuove opportunità offerte dalle tecnologie quantistiche in vari ambiti disciplinari.
  • Abilità comunicative (communication skills) – Competenze nella comunicazione nell’ambito delle tecnologie quantistiche, nei suoi vari risvolti interdisciplinari.
  • Capacità di apprendimento (learning skills) – Acquisizione di strumenti conoscitivi per l'aggiornamento continuo delle conoscenze, nel settore della informazione quantistica, tramite l'accesso a laboratori e alla letteratura specializzata. Capacità di valutare le potenzialità offerte dalle tecnologie quantistiche ai fini dell'attività post-laurea e lavorativa.

Modalità di svolgimento dell'insegnamento

Lezioni frontali, esercizi e dimostrazioni con software dedicato. Saranno organizzati seminari tenuti da ricercatori del settore. Orario di ricevimento: Lunedi 17:00-19:00 e Martedi 17:00-18:00 presso il DFA (Edificio 6) studio 212.


Prerequisiti richiesti

Corsi di meccanica quantistica e meccanica quantistica avanzata, struttura della materia, meccanica statistica elementare, algebra lineare e introduzione agli spazi funzionali. Sebbene possano essere d'aiuto, per cui se ne consiglia la frequenza, i corsi di superconduttività e di ottica quantistica non sono strettamente propedeutici.


Frequenza lezioni

Caldamente suggerita.


Contenuti del corso

  1. Rappresentazione dei sistemi coerenti (12+2 h)
    Bit quantistici, sistemi composti; sistemi fisici (fotoni, spin nucleari, atomi confinati, atomi artificiali a semiconduttore e superconduttorI, cavità); algebra negli spazi di Hilbert e applicazioni a reti quantistiche; esempi: interferometria e dinamica; computazione classica e quantistica (seminario); stati misti e matrice densità.
  2. Dinamica quantistica (12+2 h)
    Operatore di evoluzione temporale; dinamica impulsiva; equazioni di Heisenberg e di von Neumann e loro estensione fenomenologica a decadimento e dephasing; sistemi quantistici in campi classici oscillanti; trasformazioni unitarie dipendenti dal tempo e applicazioni (sistemi rotanti, riferimento solidale, fasi geometriche, scorciatoie per l'adiabaticità)
  3. Sistemi bipartiti e multipartiti (6+2 h)
    Misura e modello di von Neumann; applicazioni (superdense coding, teorema no-cloning, crittografia, teletrasporto quantistico); Entanglement; paradosso di EPR e disuguaglianza di Bell (seminariale). Rumore e sistemi aperti.
  4. Nanosistemi coerenti (4 h) (da due a tre argomenti tra i sottoelencati)
    NMR di molecole in liquidi; fotoni e atomi in cavità; atomi artificiali e circuit-QED; Ioni in trappola e atomi freddi. sistemi nanomeccanici e nanoelettromeccanici; eccitazioni topologiche nella materia.
  5. Un argomento scelto (2 h) (a carattere seminariale, un argomento tra i sottoelencati)
    Nuove tecnologie quantistiche di misura e sensoristica; teoria dei sistemi quantistici aperti; cenni di teoria dell'informazione quantistica; introduzione alla termodinamica quantistica; introduzione alla teoria del controllo quantistico.

Testi di riferimento

[1] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2010.
[2] S. Haroche and J.M. Raimond, Exploring the Quantum : Atoms, Cavities and Photons, Oxford, 2006.
[3] G. Falci, Informazione quantistica: appunti del corso.
[4] G. Chen, D. A. Church, B.-G. Englert, C. Henkel, B. Rohwedder, M. O. Scully, and M. S. Zubairy. Quantum Computing Devices: Principles, Designs and Analysis. Chapman and Hall/CRC, 2007.
[5] C. P. Williams and S. H. Clearwater, Explorations in Quantum Computing, Springer Verlag, New York, 1998.
[6] G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and Information, voll. 1 e 2, World Scientific, 2004



Programmazione del corso

 ArgomentiRiferimenti testi
1Rappresentazione dei sistemi quantistici[1,2,3] 
2Sistemi bipartiti [1,2,3] 
3Dinamica quantistica[2,3] 
4Sistemi fisici[3,4] 
5Argomenti scelti[1,2,5] 

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

  • L'esame consiste nella predisposizione di un elaborato o in un esame orale standard.
  • L'elaborato verte su un argomento assegnato dal docente nel periodo iniziale del corso, comprende un calcolo analitico o numerico che lo studente dovrà sviluppare in maniera indipendente ma assistita, ed una esposizione.
  • La prova orale standard comprende: (a) esposizione di un argomento a scelta del candidato; (b) esposizione di un argomento scelto dal candidato tra tre proposti dal docente, di diversa difficolt`a. Il superamento della prova orale dipende dalla prova (a) mentre la valutazione dipende dalla (b).

Esempi di domande e/o esercizi frequenti

- Derivare l'algebra di SU(2);

- Spazi di Liouville ed esempi di basi

- Esempi fisici di bit quantistic

- Derivare l'espressione esplicita di funzioni di operatori nilpotenti, idempotenti e di matrici di Pauli.i

- Quantizzazione in circuiti mesoscopic

- Relazione tra U(2) e SU(2)

- Sistemi composti, fattorizzazione, operatori (gate) entangling

- Soluzioni formali per la dinamica

- Oscillazioni coerenti e oscillazioni di Rabi

- Trasformazioni di gauge e trasformazioni untarie dipendenti dal tempo

- Sistemi bipartiti: entanglement

- Sistemi bipartiti: misura

- Sistemi bipartiti: decoerenza