PHYSICS LABORATORY II M - Z

Academic Year 2022/2023 - Teacher: Antonio TERRASI

Expected Learning Outcomes

The approach used in this Course  is experimental and  applied. Learning objectives specific to this Course  are:

  • Understanding electromagnetic and  optical  phenomena from an experimental, practical perspective.
  • Becoming skilled in assembling electric circuits, in building  electric, magnetic and  optical  devices, and  in performing measurements of physical quantities and  technical specifications.
  • Gaining  basic  knowledge about the  working  principles of instruments, mastering general methods and  developing skills useful  in investigating electromagnetic and  optical  phenomena not necessarily already presented in the  Course.
  • Gaining  basic  knowledge and  developing skills useful  in designing new devices in the  concerned scientific field.
  • Develop the  ability to correctly analyze scientific data and  to present an experiment in a good- quality  scientific paper where the  data are  analyzed and  results are  presented and  interpreted. Develop the  ability to communicate the  results of a scientific measurement or experiment in an exhaustive, clear, efficient and  correct fashion.

In addition, in the  frame of the  so-called Dublin Descriptors, this Course  helps  attain the  following cross-disciplinary competences:

Knowledge and  understanding:

  • Inductive and  deductive reasoning.
  • Ability to formalize the  description of a natural phenomenon in terms of scalar and  vector physical quantities.
  • Ability to formulate a problem using  suitable mathematical relationships (such  as algebraic,
  • integral or differential) among physical quantities, and  then solve  it by means of analytical or numerical methods.
  • Ability to arrange and  set  up a simple  experimental apparatus, and  to use  scientific instruments for thermal, mechanical and  electromagnetic measurements.
  • Ability to perform statistical analysis of data.

Applying knowledge and  understanding:

  • Ability to apply  the  gained knowledge in order  to describe physical phenomena using  rigorously the scientific method.
  • Ability to design simple  experiments and  perform analysis of their  experimental data in all domains of Physics  including those with technological spinoff.

Making judgements:

  • Developing critical  thinking.
  • Ability to find the  best methods to critically analyze, elaborate and  interpret experimental data. Ability to understand the  predictions of a theory or model.
  • Ability to evaluate accuracy of measurements, linearity of instrumental response, sensitivity and selectivity of employed techniques.

Communication skills:

  • Ability to orally present, using  fluent scientific language and  appropriate scientific vocabulary, a scientific topic,  including any underlying motivations and  illustrating any results.
  • Ability to report in writing,  using  fluent scientific language and  appropriate scientific vocabulary, on a scientific topic,  including any underlying motivations and  illustrating any results.

Course Structure

This course alternates 3 cycles  of lectures in the  Classroom with 3 corresponding cycles  of practical sessions in the  Lab. The course begins with a first cycle of lectures in the  Classroom, which is followed by a corresponding first cycle of practical sessions in the  Lab. Then we continue with the  second cycle of lectures in the  Classroom, and  so on.

The classroom lectures introduce the  working  principles of scientific instruments and  present the experimental setups of some experiments aimed at illustrating electromagnetic and  optical  phenomena, at verifying  natural laws, and  at measuring physical properties in the  same fields.  Procedures to analyze and  ways  to present the  data that will be collected in the  Lab are  specifically highlighted.

During the  cycles  of practical sessions in the  Lab the  students actually perform the  experiments and make the  measurements  previously introduced by the  Classroom lectures.

During the periods devoted to  lectures in the Classroom there are  NO sessions in the Lab. During the periods devoted to  practical sessions  in the Lab there are  NO lectures in the classroom.

Should circumstances require the lectures to be given online on in a mixed manner, some variations to the mechanisms illustrated above may become necessary, aiming however at fulfilling the planned course programme.

7 CFUs (corresponding to 7 hours  each) are  dedicated to lectures in the  Classroom for a total  of 49 hours, while 5 CFUs (corresponding to 15 hours  each) are  devoted to the  practical sessions in the  Lab with a total  of 75 hours. Altogether, thus, this 12-CFU Course  comprises 124 hours  of teaching.

Detailed Course Content

Description and  subsequent execution of 26 experiments aimed to measure physics quantities and/or to verify physical laws in the  fields  of electromagnetism and  optics. Analysis of the  collected experimental data.

The detailed program is listed  in the  Section "Programmazione" (in Italian  only).

Textbook Information

The teacher does  not follow any textbook specifically, but utilizes  material from different sources. Studying the  slides  shown  during  the  lectures is normally adequate  to pass the  exam.

For the  laboratory experiments, Instruction Manuals  are  provided. They can  also be downloaded from the

Course  web site  (in Italian  only): Instructions.

For students who wish to dwell deeper into the  subjects of the  Course, the  following list is a selection of textbooks and  other material concerning data analysis methods, electrical and  optical  instrumentation used in this Course, and  related experimental procedures.

A. FOTI, C. GIANINO: Elementi di analisi dei  dati sperimentali, Liguori Ed., Napoli

J. R. TAYLOR: Introduzione all'analisi degli errori, Zanichelli  Ed., Bologna

ISO(Int.Standard Org.): Guide to  the Expression of Uncertainty in Measurement, Ginevra

L. KIRKUP, B. FRENKEL: An Introduction to  Uncertainty in Measurement,  Cambridge University

Press

L. G. PARRAT: Probability and  Experimental Errors  in Science, Wiley & Sons  Inc.,N.Y. F. TYLER: A Laboratory Manual of Physics, Edward  Arnold Ed., London

M. SEVERI: Introduzione alla  sperimentazione sica, Ed. Zanichelli, BolognaE.  ACERBI: Metodi e strumenti di misura, Città Studi Ed., Milano

G. CORTINI, S. SCIUTI: Misure ed  apparecchi di Fisica (Elettricità), Veschi Ed., Roma

R. RICAMO: Guida  alle esperimentazioni di Fisica,Vol. 2°, Casa  Editrice  Ambrosiana, Milano

F. W. SEARS: Ottica, Casa  Editrice  Ambrosiana, Milano

G. E. FRIGERIO: I laser, Casa  Editrice  Ambrosiana, Milano

Course Planning

 SubjectsText References
11 STRUMENTI DI MISURA, INCERTEZZE, ELABORAZIONE E ANALISI DEI DATISLIDES
22 RICHIAMO DI CONCETTI E DEFINIZIONI DI ALCUNE GRANDEZZE ELETTRICHESLIDES
33 STRUMENTAZIONE ELETTRICA DI BASESLIDES
44 MISURA DELLA INTENSITA’ DELLA CORRENTE ELETTRICASLIDES
55 MISURA DELLA CARICA ELETTRICASLIDES
66 MISURA DELLA DIFFERENZA DI POTENZIALE O TENSIONE ELETTRICASLIDES
77 MISURA DELLA RESISTENZA ELETTRICASLIDES
88 STRUMENTI ANALOGICI E DIGITALISLIDES
99 DETERMINAZIONE DELLA SENSIBILITA’ AMPEROMETRICA E DELLA RESISTENZA INTERNA DI UN GALVANOMETROSLIDES E SCHEDA
1010 DETERMINAZIONE DELLA COSTANTE BALISTICA DI UN GALVANOMETRO E MISURA DI CAPACITA’ INCOGNITESLIDES E SCHEDA
1111 COSTRUZIONE DI UN VOLTMETRO A DIVERSE PORTATE; MISURA DELLA RESISTENZA INTERNA E VARIAZIONE DELLA PORTATA DI UN VOLTMETROSLIDES E SCHEDA
1212 DETERMINAZIONE DELLA F.E.M. E DELLA RESISTENZA INTERNA DI UNA PILA CON IL METODO POTENZIOMETRICOSLIDES E SCHEDA
1313 MISURA DI RESISTENZE CON IL METODO VOLT-AMPEROMETRICOSLIDES E SCHEDA
1414 REALIZZAZIONE E TARATURA DI UN OHMETROSLIDES E SCHEDA
1515 MISURA DEL COEFFICIENTE DI TEMPERATURA DELLA RESISTENZA DI VARI MATERIALISLIDES E SCHEDA
1616 MISURA DI UNA RESISTENZA INCOGNITA CON IL PONTE DI WHEATSTONESLIDES E SCHEDA
1717 MISURA DI RESISTENZE DI VALORE ELEVATO MEDIANTE LA SCARICA DI UN CONDENSATORESLIDES E SCHEDA
1818 ESPERIENZA DI MILLIKANSLIDES E SCHEDA
1919 TUBI ELETTRONICI E SEMICONDUTTORISLIDES
2020 MISURA DI CAMPI MAGNETICI E MOTO DI CARICHE ELETTRICHESLIDES
2121 CIRCUITI ELETTRICI PERCORSI DA CORRENTE ALTERNATASLIDES
2222 RILIEVO DELLA CARATTERISTICA DI UN DIODO A VUOTOSLIDES E SCHEDA
2323 RILIEVO DELLE CARATTERISTICHE DI UN TRIODOSLIDES E SCHEDA
2424 RILIEVO DELLA CARATTERISTICA DI UN DIODO A GIUNZIONESLIDES E SCHEDA
2525 REALIZZAZIONE E STUDIO DI UN OSCILLATORE A DENTI DI SEGASLIDES E SCHEDA
2626 MISURA DEL CAMPO MAGNETICO ALL’ INTERNO DI UN SOLENOIDESLIDES E SCHEDA
2727 TARATURA DI UNA SONDA DI HALL IN BISMUTOSLIDES E SCHEDA
2828 DETERMINAZIONE DEL RAPPORTO e/m DELL’ ELETTRONE MEDIANTE IL TUBO DI WEHNELTSLIDES E SCHEDA
2929 RILIEVO DELLA CURVA DI RISONANZA DI UN CIRCUITO RLC SERIESLIDES E SCHEDA
3030 RILIEVO DELLA CURVA DI RISONANZA DI UN CIRCUITO LC PARALLELOSLIDES E SCHEDA
3131 CURVE DI RISPOSTA A SEGNALI SINUSOIDALI DI UN CIRCUITO RC SERIESLIDES E SCHEDA
3232 OTTICA GEOMETRICASLIDES
3333 OTTICA FISICASLIDES
3434 MISURA DELLA VELOCITA’ DELLA LUCESLIDES E SCHEDA
3535 MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTESLIDES E SCHEDA
3636 DETERMINAZIONE DELLA DISTANZA FOCALE DI UNA LENTE DIVERGENTESLIDES E SCHEDA
3737 DETERMINAZIONE DELL' INDICE DI RIFRAZIONE DI UN PRISMA DI VETRO CON UNO SPETTROSCOPIO E MISURA DI LUNGHEZZE D' ONDASLIDES E SCHEDA
3838 MISURA DI LUNGHEZZE D' ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFFRAZIONESLIDES E SCHEDA
3939 VERIFICA DELLA LEGGE DI MALUS E MISURA DELLA CONCENTRAZIONE DI UNA SOLUZIONE CON DUE POLAROIDISLIDES E SCHEDA