PHYSICS LABORATORY III

Academic Year 2018/2019 - 3° Year
Teaching Staff: Francesco RIGGI
Credit Value: 9
Scientific field: FIS/01 - Experimental physics
Taught classes: 28 hours
Laboratories: 75 hours
Term / Semester: One-year

Learning Objectives

Provide a basic knowledge of experimental techniques concerning the interaction of radiation with matter, particle detectors, signal processing, electronics as well as statisticaò methods for simulation and data analysis.


Course Structure

1) Lectures

2) Exercises during hall lectures

3) Laboratory demonstrations

4) Experiments in the lab by the students


Detailed Course Content

Content of the course:

Parte I

 

1. Tecniques and laboratory instrumentation

Sensors for the measurement of physical quantities - Analog and digital sensors - Data acquisition from sensors - Digital multimetere- Analog and digital oscilloscopes - Vacuum techniques - Elements for vacumm production and measurement - Measurement of radiations from Infrared to ultraviolet - Optical fibers - Spectrophotometers - Radioactive sources

2. Radiation Detectors

Interaction of charged particle with matter - Bethe-Block relation - Range - Straggling - Energy loss of electrons and positrons - Photon interaction - Photoelectric effect - Compton Effect - Pair production - Electromagnetic showers - Particle detectors - Measure of energy, momentum, position, mass and charge of particles - General properties of a detector: sensitivity, resolution, efficiency, dead time - Gas detectors - Ionization chambers - Geiger counters - Solid state detectors - Strip, drift and pixel detectors - Radiation damage - Scintillation detectors - Light yield - Photomultipliers - Light guides and WLS fibers - APD and SiPM.

 

3. Elements of Electronics

Pulse signals from detectors - Analog and digital signals - Propagation of signals - Coaxial cables - SIgnal Generators- Power supply - Electronics for Nuclear Physics - The NIM standard - Linear electronics: preamplifier, amplifier, shapers - Basic knowledge of logic electronics: OR, AND, NOT circuits - Analog-to-digital converters (ADC and QDC) - Discriminators - Coincidence circuits - Counters - Trigger systems - Data acquisition - Digital pulse processing

 

4. Data analysis and simulation techniques

Knowledge of elementary statistics - Central values and dispersion indexes - Experimental distributions - Gauss and Poisson distributions - Experimental errors - SIgnificance test - Data analysis techniques in nuclear physics experiments - Spectra analysis - Background subtraction - Non linear fits . Multiparametric analysis - The ROOT software - SImulation of physical processed - Monte Carlo methods the GEANT package for detector simulation

Part II: Laboratory experiments

1) Characterization of time dependent light sources by sensors

2) Photoelectric effect and the measurement of the Planck constant

3) Study of discrete and continuous light spectra with a digital spectrophotometer

4) Detection of electrons with a Geiger counter and study of the absorption coefficient

5) Study of the light absorption at different frequencies

6) Gamma spectrometry and absorption coefficient with scintillators

7) Alpha spectrometry and study of energy loss with silicon detectors

8) Measurement of the energy spectrum of a beta source


Textbook Information

For the items concerning the interaction of particle and radiation with matter, particle detectors and electronics see one of the following textbooks:

- William R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag

- Glenn F. Knoll, Radiation Detection and Measurement, John Wiley and Sons

- Claude Leroy and Pier-Giorgio Rancoita, Principles of Radiation Interaction in Matter and Detection, World Scientific

For items concerning statistics and data analysis see:

- Louis Lyon, Statistics for nuclear and particle physics, Cambridge University Press

Additional references (textbooks, specific papers and reference manuals) will be discussed during the lectures and made available on the Web site