Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not\(^1,2\). Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings which had a relative uncertainty of (1.2–1.8)%. Beam instability was due to pion background was less than 5\%.

Measurement of parity violation in electron–quark scattering

The Jefferson Lab PVDIS Collaboration*

Measurement of parity violation in electron–quark scattering has subsequently been used as a sensitive probe to study diverse physics, ranging from physics beyond the standard model\(^5,10\) to the structure of both nuclei\(^11\) and the nucleon (ref. 12 and references therein).

In so-called tree-level scattering, where the electron exchanges only a single photon or a single Z boson with the target, very simple expressions for \(a_{1,3}\) in equation (2) emerge for electron DIS from deuterium:

\[
a_1 = \frac{6}{5} (2C_{1u} - C_{1d}), \quad a_3 = \frac{6}{5} (2C_{2u} - C_{2d})
\]

The use of the deuterium target simplifies the interpretation because it has equal numbers of up and down valence quarks. Here, \(C_{1u(1d)}\) and \(C_{2u(2d)}\) are the effective weak couplings between the electrons and the up (down) quarks, often collectively written as \(C_{1q}\) and \(C_{2q}\). The subscripts 1 and 2 refer to whether the coupling to the electron or quark is vector or axial-vector in nature: \(C_{1q}\) is the (AV) combination of the electron’s vector weak charge and the quark’s vector weak charge, that is, it probes parity violation caused by the difference in the \(Z^0\) coupling between left- and right-handed electron chiral states; \(C_{2q}\) is the (VA) combination of the electron’s vector weak charge and the quark’s axial-vector weak charge that is sensitive to parity violation due to different quark chiral states. In testing the standard model it is important to determine all four \(C_{1u(1d)2u(2d)}\) as accurately as possible, because new interactions could manifest themselves in either set of couplings. Experimentally, one could extract both \(2C_{1u} - C_{1d}\) and \(2C_{2u} - C_{2d}\) by measuring asymmetries at different \(Y_1, 3\) values in the DIS regime. However, a precise determination of \(2C_{1u} - C_{1d}\) is difficult because of its small value in the standard model (−0.095), as opposed to \(2C_{2u} - C_{2d}\) which is large (−0.719).

The new measurement reported here was performed using the electron beam at the Thomas Jefferson National Accelerator Facility (referred to here as Jefferson Lab), in Virginia, USA. A 100-\(\mu\)A, nearly 90%-longitudinally-polarized electron beam was incident on a 20-cm-long liquid deuterium target held at a temperature of 22 K. Scattered particles were detected in a pair of magnetic spectrometers that determined the momentum and the direction of the detected particles to high precision\(^3\). To directly access \(C_{2u(2d)}\) the kinematics were chosen so that the bulk of the detected electrons emerged from the target after undergoing a DIS interaction. In contrast, all other PVES experiments after SLAC E122 were performed outside the DIS regime, and thus could not provide clean information on \(C_{2q}\).

The size of the asymmetry expected for this measurement is at the level of \(10^{-4}\). The major challenge comes from the combination of the high electron event rate, and the high pion background typical of DIS measurements. This was overcome by the use of a custom electronic and data acquisition (DAQ) system with built-in pion rejection capability\(^4\). The DAQ system successfully counted electrons, event-by-event, at rates up to 600 kHz. The relative uncertainty in the measured asymmetries due to pion background was less than 5 \(\times 10^{-4}\), and that due to counting deadtime was less than 0.4\%. The leading systematic uncertainty comes from the normalization by the electron beam polarization, which had a relative uncertainty of (1.2–1.8\%) beam instability was
not a significant issue because of recent advances in the monitoring and feedback control of the beam, a direct outcome of some of the earlier PVES studies. The high intensity of the Jefferson Lab beam allowed the completion of the experiment in just under two months. A total of about 170,000 million scattered electrons were counted at two settings. The asymmetry measured at $E = 6.067$ GeV, $(\chi) = 0.241$, $Y_1 = 1.0$, $Y_2 = 0.44$ and $(Q^2) = 1.085$ (GeV c^{-2})2 was

$$A_{\text{exp}} = [-91.1 \pm 3.1(\text{stat.}) \pm 3.0(\text{syst.})] \times 10^{-6} \quad (4)$$

where (χ) and (Q^2) are averaged over the spectrometer acceptance, and stat. and syst. indicate statistical and systematic errors, respectively. This result is to be compared with the standard model (SM) expectation of $A_{\text{SM}} = -87.7 \times 10^{-6}$, with an uncertainty of 0.7×10^{-6} dominated by the uncertainty in the parton distribution functions (PDFs), parameterizations of how partons (quarks and gluons) that form the nucleon carry the nucleon’s energy. To allow an extraction of $C_{1\text{u},2d}$ and $C_{2\text{u},3d}$, it is necessary to express the asymmetry in terms of these couplings. This relation was calculated using the MSTW2008 leading-order PDF parametrization. For the kinematics above, it gives $A_{\text{SM}} = (1.156 \times 10^{-8})$ $[(2C_{2\text{u}} - C_{1\text{d}}) + 3.348(2C_{2\text{d}} - C_{3\text{d}})]$, where the relative uncertainties of the coefficients for the $(2C_{1\text{u}} - C_{1\text{d}})$ and the $(2C_{2\text{u}} - C_{2\text{d}})$ terms are 0.5% and 5%, respectively. The second standard setting was at $E = 6.067$ GeV, $(\chi) = 0.295$, $Y_1 = 1.0$, $Y_2 = 0.69$, $(Q^2) = 1.901$ (GeV c^{-2})2, and the result was:

$$A_{\text{exp}} = [-160.8 \pm 6.4(\text{stat.}) \pm 3.1(\text{syst.})] \times 10^{-6} \quad (5)$$

The standard model expectation is $A_{\text{SM}} = (158.9 \pm 1.0) \times 10^{-6}$. The coupling sensitivity is $A_{\text{SM}} = (2.022 \times 10^{-6})[(2C_{2\text{u}} - C_{1\text{d}}) + 0.594(2C_{2\text{u}} - C_{2\text{d}})]$, with the same relative uncertainties as the first DIS setting. Details of the standard model calculation and the uncertainty due to PDF fits are given in Supplementary Methods.

Using the most recent world data for the coupling $C_{1\text{u},1\text{d}}$ (ref. 16), obtained from PVES and caesium atomic parity violation experiments, a simultaneous fit of $2C_{2\text{u}} - C_{1\text{d}}$ and $2C_{2\text{u}} - C_{2\text{d}}$ to our results and to the asymmetries from SLAC E122 was performed, yielding:

$$(2C_{2\text{u}} - C_{2\text{d}})|_{Q^2=0} = -0.145 \pm 0.066(\text{exp.})$$

$$\pm 0.011(\text{PDF}) \pm 0.012(\text{HT})$$

$$= -0.145 \pm 0.068(\text{total}) \quad (6)$$

Here, exp. refers to the total experimental uncertainty, given by the statistical and the systematic uncertainties of the asymmetry results added in quadrature. The third uncertainty is due to the so-called higher-twist (HT) effects, caused by interactions among quarks inside the target. Further theoretical uncertainties, including QED vacuum polarization and the $Z\gamma$ box diagram, are negligible compared to the uncertainty due to the PDF fits. Electroweak and process-specific radiative corrections have been applied to calculate the values at zero-Q^2, $2C_{2\text{u},2d}|_{Q^2=0}$ called $\delta_{Q^2=0}^{\text{ew},\text{HT}}$ with ϵ referring to electrons (and similarly $C_{1\text{u},1d}|_{Q^2=0}$ called $\delta_{Q^2=0}^{\text{ew},\text{HT}}$) in ref. 21, so that the values in equation (6) can be compared directly to results from other precision experiments using different kinds of processes. The values for $C_{2\text{u},2d}|_{Q^2=0}$ differ from those at both Q^2 accessed in this experiment by 0.002–0.003 for both the up and the down quarks.

The asymmetry results in equations (4) and (5) can also be interpreted as a determination of the weak mixing angle θ_W, an important ingredient of the electroweak unification of the standard model. The result, evolved to the mass of the Z boson in the modified minimal subtraction (MS) scheme, $\sin^2 \theta_W |_{Q^2=0}$, $\delta_{Q^2=0}^{\text{ew},\text{HT}} = 0.2299 \pm 0.0043$, in agreement with the latest standard-model fit to world data, $\sin^2 \theta_W = 0.23126 \pm 0.00005$. The result in equation (6) is compared with the standard-model prediction $2C_{2\text{u}} - C_{2\text{d}}|_{Q^2=0} = -0.0950 \pm 0.0004$ in Fig. 1. Our results have greatly improved the uncertainty on the effective electron–quark VA weak couplings $C_{2\text{u},2d}$ and are in good agreement with the standard-model prediction. This is also the first direct measurement of the coupling combination $2C_{2\text{u}} - C_{2\text{d}}$ that deviates from zero. We note that evidence for non-zero values of the $C_{2\text{u},2d}$, possibly in a different combination from what we measured, may have been observed in experiments measuring the nucleon axial form factors\(^2\). However, extraction of $C_{2\text{u},2d}$ from the nucleon axial form factor is model-dependent, whereas in DIS the electron probes quarks unambiguously. The directness of our approach is essential to reach a significantly higher accuracy in the future, such as through the PVDIS programme planned for the 12 GeV upgrade of Jefferson Lab.

A comparison of the present result with the standard-model predictions can be used to set mass limits A below which new interactions are unlikely to occur. For the cases of electron and quark compositeness and contact interactions, we used the convention of ref. 23 and the procedure in ref. 24. The limit for the constructive (destructive) interference contribution to the standard model is:

$$A \pm = \sqrt{\frac{8\sqrt{5}\pi}{(2C_{2\text{u}} - C_{2\text{d}})|_{Q^2=0}}}$$

$$= \sqrt{\frac{8\sqrt{5}\pi}{(2C_{2\text{u}} - C_{2\text{d}})|_{Q^2=0}}} \quad (7)$$

where $(2C_{2\text{u}} - C_{2\text{d}})|_{Q^2=0}$ is the difference between the standard-model value and the upper (lower) confidence bound of the data, $\sqrt{\frac{8\sqrt{5}\pi}{(2C_{2\text{u}} - C_{2\text{d}})|_{Q^2=0}} = 246.22$ GeV is the Higgs vacuum expectation value setting the electroweak scale, and the $\sqrt{5}$ is a normalization factor taking into account the coefficients of the $C_{2\text{u},2d}$ in the denominator.

Figure 1 | Comparison of the present results with those of earlier experiments and predictions of the standard model. Values of $(2C_{1\text{u}} - C_{1\text{d}})|_{Q^2=0}$ and $(2C_{2\text{u}} - C_{2\text{d}})|_{Q^2=0}$ from this experiment (ellipse with blue horizontal hatching) are compared with those of SLAC E122 (yellow ellipse)\(^4\). The latest data on $C_{1\text{u},1\text{d}}$ from PVES\(^5\) and atomic Cs\(^1\) are shown as the band with magenta vertical hatching. The ellipse with diagonal green hatching shows the combined result of SLAC E122, this experiment and the latest $C_{1\text{u},1\text{d}}$. The standard model value (with negligible uncertainty) is shown as the black dot, where the size of the dot is for visibility.
For a 95% confidence level, we extracted
\[A^+ = 5.8 \text{ TeV} \quad \text{and} \quad A^- = 4.6 \text{ TeV} \]
for constructive and destructive interference from beyond-the-standard-model physics. Figure 2 illustrates these limits. The limits set by $C_{1u,1d}$ are determined mostly by previous VESs and caesium atomic-parity-violation results, but this experiment clearly improves the limits set by $C_{2u,2d}$.

The strength of our results reported here is that they isolate a well-defined combination of the electron–quark contact interactions. We note that mass limits on the electron–quark contact interactions have been published by the ZEUS\(^2\) and H1\(^2\) collaborations at the Hadron–Electron Ring Accelerator, HERA. They find $A^+ = 3.3$ TeV and $A^- = 3.2$ TeV (ref. 25), and $A^+ = 3.8$ TeV and $A^- = 3.6$ TeV (ref. 26), respectively, on the electron–quark VA term. Similar limits of $A^+ = 9.5$ TeV and $A^- = 12.1$ TeV have been published by the ATLAS collaboration\(^2\)7 at the LHC in the left–left isoscalar model. To account for the different chirality structure of the models used, the HERA limits on the electron–quark VA model need to be scaled by $2^{-1/4} = 0.84$, while the LHC limits using the left–left isoscalar model need to be scaled by $2^{1/4} = 1.19$, in order to be compared to the mass limits extracted from $C_{2u,2d}$.

The HERA and the LHC measurements are sensitive to several different vector and axial-vector weak charge combinations, thus their limits were obtained with the assumption that, apart from the particular chirality combination used in the model, all other contact interactions are zero. This assumption is unnecessary for the extraction of mass limits from our results. The chiral structure of the effective electron–quark weak couplings C_{ij} isolates interactions beyond the standard model in which it is the chirality of the quarks that is responsible for the observed parity violation.

METHODS SUMMARY

The parity-violating asymmetry A_{lep} between right- and left-handed electrons was computed from the detected counts C_i normalized by the beam intensity I and integrated over periods of stable beam helicity. Two kinds of corrections were then made to the asymmetries: overall normalization factors and possible systematic shifts due to false asymmetries arising from backgrounds or helicity correlations in the beam parameters. The normalization factors include the beam polarization, measurements of scattered-electron kinematics, electromagnetic radiative corrections, and effects from two-photon exchange between the electron and target. The false-asymmetry corrections were all very small compared to the statistical error and included an evaluation of helicity correlations in beam current, position and energy, and backgrounds such as pions, scattering from the target aluminum windows, or rescattering inside the spectrometers. A summary of all corrections and the asymmetry results is presented in Supplementary Table 1.

To calculate the standard-model expectation of the measured asymmetry and its sensitivity to $2C_{1u} - C_{1d}$ and $2C_{2u} - C_{2d}$, we used PDFs to calculate the structure functions in $a_{1\text{P}}$. Three PDF fits were used. Results of the calculation are shown in Supplementary Table 2. The relative variation among all these fits is less than 0.6% for the $a_{1\text{P}}$ term, and less than 5% for the $a_{1\text{P}}$ term of the asymmetry. Effects from interactions among quarks inside the target, called ‘higher-twist effects’, were evaluated using the most recent theoretical bounds combined with data on neutrino structure functions. It was found that the uncertainty in the extraction of $2C_{1u} - C_{1d}$ due to the higher-twist effects is at the same level as that due to the PDFs, and is quite small compared to the experimental uncertainties.

Received 28 October; accepted 17 December 2013.
The Jefferson Lab PVDIS Collaboration

1University of Virginia, Charlottesville, Virginia 22904, USA. 2Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 3Syracuse University, Syracuse, New York 13244, USA. 4University of Kentucky, Lexington, Kentucky 40506, USA. 5California State University, Los Angeles, Los Angeles, California 90032, USA. 6College of William and Mary, Williamsburg, Virginia 23187, USA. 7Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA. 8Istituto Nazionale di Fisica Nucleare, Dipt. di Fisica dell’Univ. di Catania, I-95123 Catania, Italy. 9Ohio University, Athens, Ohio 45701, USA. 10Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA. 11Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. 12Old Dominion University, Norfolk, Virginia 23529, USA. 13INFN, Sezione di Roma, gruppo Sanità and Istituto Superiore di Sanità, I-00161 Rome, Italy. 14University of Bari, I-70126 Bari, Italy. 15Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA. 16Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F., Mexico. 17Temple University, Philadelphia, Pennsylvania 19122, USA. 18Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine. 19Louisiana State University, Baton Rouge, Louisiana 71203, USA. 20Longwood University, Farmville, Virginia 23909, USA. 21Université Claude-Bernard Lyon 1, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, FR-69623 Villeurbanne, France. 22Seoul National University, Seoul 151-742, South Korea. 23University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA. 24Kent State University, Kent, Ohio 44242, USA. 25INFN, Sezione di Roma and Sapienza – Università di Roma, I-00161 Rome, Italy. 26Institut Jožef Stefan, SI-1001 Ljubljana, Slovenia. 27George Washington University, Washington DC 20052, USA. 28Mississippi State University, Starkville, Mississippi 39762, USA. 29University of New Hampshire, Durham, New Hampshire 03824, USA. 30Rutgers, The State University of New Jersey, Camden, New Jersey 08102, USA. 31Yerevan Physics Institute, Yerevan 0036, Armenia. 32China Institute of Atomic Energy, Beijing 102413, China. 33Richland College, Dallas County Community College District, Dallas, Texas 75243, USA. 34College of William and Mary, Williamsburg, Virginia 23187, USA. 35Idaho State University, Pocatello, Idaho 83201, USA (D.M.). 36Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA (K.E.M.). 37Kasetsart University, Bangkok 10900, Thailand (K.S.).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank the personnel of Jefferson Lab for their efforts which resulted in the successful completion of the experiment, and A. Accardi, P. Blunden, W. Meintlichouk and their collaborators for carrying out the calculations necessary for the completion of the data analysis. X.Z. thanks the Medium Energy Physics Group at the Argonne National Laboratory for support during the initial work on this experiment. J.E. was supported by PAPIIT (DGAPA-UNAM) project IN106913 and CONACyT (Mexico) project 151234, and acknowledges the hospitality and support by the Mainz Institute for Theoretical Physics (MITP) where part of his work was completed. This work was supported in part by the Jeffress Memorial Trust (award no. J-836), the US NSF (award no. 0653347), and the US DOE (award nos DE-SC0003985 and DE-AC02-06CH11357). This work was authored by Jefferson Science Associates, LLC under US DOE contract no. DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes.

Author Contributions Authors contributed to one or more of the following areas: proposing, leading, and running the experiment; design, construction, optimization, and testing of the data acquisition system; data analysis; simulation; extraction of the physics results from measured asymmetries; and the writing of this Letter.

Author Information J.E. is currently on sabatical leave at the PRISMA Cluster of Excellence and MITP, Johannes Gutenberg University. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to X.Z. (x2zy@virginia.edu).