

DIPARTIMENTO DI FISICA E ASTRONOMIA Ettore MAJORANA

DOTTORATO DI RICERCA IN FISICA

ANNO ACCADEMICO 2020 - 2021 CICLO XXXVI

Clusters in Atomic Nuclei

2 CFU

Teaching staff
Dr. Ivano Lombardo (INFN)
Email: ivano.lombardo@ct.infn.it

Office: DFA-UniCT (room 113, 1st floor)

Telephone: +39 320 5722856

Reception hours: Monday-Friday 13-14

Program of the course:

- **1 Modern view of particle decay of nuclear states**. α -decay: Coulomb and centrifugal barrier effects. Hindrance factors. Decay towards excited states of the daughter nucleus. Odd-nuclei and α decay. Geiger-Nuttal law and fine-tuning problems. Electron screening effects. Selection rules in α decay. Test of parity violation in strong interactions. Semi-classical calculations of α spectroscopic factors. Rose & Jones experiment and cluster radioactivity.
- **2 A summary of decays and reactions useful to test clustering in nuclei**. Beta decay and electron capture. Nuclear Fluorescence resonance. Resonant elastic and inelastic scattering of α particles. α -transfer reactions. Sequential break-up of nuclei. Analysis methods to extract nuclear structure properties from experimental data.
- **3** α clustering in light nuclei. Self-conjugate nuclei: their peculiar properties. Lifetime of 8 Be states and Coulomb barrier effects. Isotopes of Be and nuclear dimers. Nuclear Orbitals. σ and π bonding in nuclei. Coriolis effect on molecular rotational bands. The 12 C case. The "Hoyle state": its properties and mysteries. The anthropic principle. Signatures of Bose-Einstein condensation in nuclei. A novel view of light nuclei structure: the Algebraic Cluster Model (ACM). Symmetries and Group theory in light nuclei. n-rich and p-rich isotopes of carbon. Nuclear molecules. Effects of α clustering on nuclear astrophysics.

Bibliography:

- [1] A.S. Davydov, Theory of Atomic Nucleus, Nauka
- [2] I.E. McCarthy, Introduction to Nuclear Theory, Wiley
- [3] L. Valentin, Noyaux and Particules, Hermann
- [4] C. Beck (Ed.), Clusters in Nuclei, Springer