Catania, aprile 2018

]a strana term()dlnamlca massimo palma

universita di palermo

del mondo dei quanti =~ ~est-on



SOMMmMAario

# il diavolo di Maxwell, entropia ed informazione

* entanglement e sistemi multipartiti

+ tipicalita

» lavoro, calore, cicli termodinamici



il diavoletto di Maxwell

11 diavoletto di Maxwell, descritto nel 1871 da James Clerk Maxwell, sembra in grado di violare
il secondo principio della termodinamica. Il diavoletto aziona una porticina su un setto posto fra
due recipienti che contengono gas alla stessa temperatura e pressione. Egli osserva le molecole
che si avvicinano al foro e apre o chiude la porticina lasciando passare le molecole pid veloci dal
recipiente A a quello B, ma non viceversa, e quelle pill lente solo da B ad A. Il recipiente B si
riscalda, mentre I’altro si raffredda. Per il secondo principio occorre lavoro per produrre una
differenza di temperatura, ma il lavoro per azionare la porta pud essere reso piccolo a piacere.

Con una porticina a molla si pud realizzare una versione automatica del diavoletto di Maxwell
che produce una differenza di pressione anziché di temperatura. Fra due recipienti contenenti
inizialmente gas alla stessa pressione e temperatura vi ¢ un foro munito di una porticina a molla.
La porticina si apre in una sola direzione, per lasciare passare le molecole dal recipiente B al
recipiente A, ma non viceversa. Si puo pensare che, alla fine, le molecole si accumulino in A a
spese di B, producendo una differenza di pressione. Ma, in pratica, questo non pud avvenire.
La porticina, riscaldata dagli urti con le molecole, prende ad aprirsi e a chiudersi casualmente
per agitazione termica. Quando ¢ aperta non puo fungere da valvola a flusso unidirezionale ¢
quando si chiude pud spingere una molecola da A a B. Il secondo processo avviene altrettanto
frequentemente di quello nel quale una molecola di B spinge la porta per passare in A.
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per non violare il secondo
principio e’ necessario che nel
ciclo venga dissipata un energia
pari a KTIn2

Secondo il principio di Landauer
questa energia viene dissipata
quando viene cancellata la
memoria
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La macchina di Szilard, descritta da Leo Szilard nel 1929, sembra poter convertire il calore
dell’ambiente in lavoro, violando il secondo principio. La macchina (7) € costituita da un cilindro
con le estremita chiuse da pistoni; ¢ munita di un setto mobile e di apparecchiature per osservare
il contenuto del cilindro e memorizzare le osservazioni. Il cilindro contiene una sola molecola.
Allinizio del ciclo (2) si abbassa il setto, intrappolando la molecola in una meta del cilindro. Il
sistema di osservazione determina e memorizza la posizione della molecola (3) e il pistone dalla
parte opposta viene spinto fino a toccare il setto (4). Il pistone viene spostato senza compiere
lavoro, dato che si muove nel vuoto. Poi il setto viene ritirato (5) e la molecola urta il pistone (il
gas monomolecolare si «espande»), spingendolo indietro (6). L’energia spesa dalla molecola nel
compiere lavoro sul pistone & compensata dal calore sottratto all’ambiente. Quando il pistone ¢
tornato nella posizione originale (7), la memoria viene cancellata (8) e il ciclo pud ricominciare.
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gli stati tipici di un sistema multipartito sono fortemente entangled

e possibile ottenere uno stato “termico”
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quantum optomechanics
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Fig. 1. (A) Photo-Carnot engine in which radiation pressure from a thermally excited single-mode field
drives a piston. Atoms flow through the engine and keep the field at a constant temperature T, for the
isothermal 1 — 2 portion of the Carnot cycle (Fig. 2). Upon exiting the engine, the bath atoms are cooler
than when they entered and are reheated by interactions with the hohlraum at 7, and “stored” in
preparation for the next cycle. The combination of reheating and storing is depicted in (A) as the heat
reservoir. A cold reservoir at T provides the entropy sink. (B) Two-level atoms in a regular thermal
distribution, determined by temperature T}, heat the driving radiation to T,,4 = T}, such that the regular
operating efficiency is given by m. (C) When the field is heated, however, by a phaseonium in which the
ground state doublet has a small amount of coherence and the populations of levels a, b, and c, are
thermally distributed, the field temperature is T.,4 > T}, and the operating efficiency is given by m,
where m can be read off from Eq. 7. (D) A free electron propagates coherently from holes b and ¢ witl
amplitudes B and C to point a on screen. The probability of the electron landing at point a shows the
characteristic pattern of interference between (partially) coherent waves. (E) A bound atomic electron
is excited by the radiation field from a coherent superposition of levels b and ¢ with amplitudes B and
C to level a. The probability of exciting the electron to level a displays the same kind of interference
behavior as in the case of free electrons; i.e.,, as we change the relative phase between levels b and c,
by, for example, changing the phase of the microwave field which prepares the coherence, the
probability of exciting the atom varies sinusoidally, as indicated in Eq. 4.
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Fig. 2. Temperature-entropy diagram for Car-
not cycle engine. In the present QHE, Q,, is
provided by the hot atoms. When T,, = T, the
photo-Carnot engine can still produce useful
work if the coherent three-level heat bath at-
oms (Fig. 1C) are “phased” such that ¢ = .

Extracting Work from a Single
Heat Bath via Vanishing

Quantum Coherence
Marlan O. Scully,”? M. Suhail Zubairy,’? Girish S. Agarwal,’*

Herbert Walther?

Science 299, 862 (2003);



10N traps
@ e

Static
voltage

i,

/

(o, ::'l

0
/,’:o,

L1
,"l ’l”ﬂ’

HHHH ]
11154
i

l'" T4

Sovagsaa1)



quantum Otto cycle

Quantum Otto Cycle: principle
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The Fundamental Physical
Limits of Computation

What constraints govern the physical process of computing? Is a

minimum amount ofenergy required, for example, perlogic step?

There seems to be no minimum, but some other questions are open

by Charles H. Bennett and Rolf Landauer

computation, whether it is per-
formed by electronic machin-
ery,on an abacus or in a biolog-
ical system such as the brain, is a physi-
cal process. It is subject to the same
questions that apply to other physical
processes: How much energy must be
expended to perform a particular com-
putation? How long must it take? How
large must the computing device be? In
other words, what are the physical lim-
its of the process of computation?

So far it has been easier to ask these
questions than to answer them. To the
extent that we have found limits, they
are terribly far away from the real lim-
its of modern technology. We cannot
profess, therefore, to be guiding the
technologist or the engineer. What we
are doing is really more fundamental.
We are looking for general laws that
must govern all information process-
ing, no matter how it is accomplished.
Any limits we find must be based sole-
ly on fundamental physical principles,
not on whatever technology we may
currently be using.

There are precedents for this kind
of fundamental examination. In the
1940's Claude E. Shannon of the Bell
Telephone Laboratories found there
are limits on the amount of informa-
tion that can be transmitted through a
noisy channel; these limits apply no
matter how the message is encoded
into a signal. Shannon's work repre-
sents the birth of modern information
science. Earlier, in the mid- and late
19th century, physicists attempting to
determine the fundamental limits on
the efficiency of steam engines had cre-
ated the science of thermodynamics.
In about 1960 one of us (Landauer)
and John Swanson at IBM began at-
tempting to apply the same type of
analysis to the process of computing.
Since the mid-1970's a growing num-

48

ber of other workers at other institu-
tions have entered this field.

In our analysis of the physical lim-
its of computation we use the term "in-
formation" in the technical sense of
information theory. In this sense infor-
mation is destroyed whenever two pre-
viously distinct situations become in-
distinguishable. In physical systems
without friction, information can nev-
er be destroyed; whenever information
is destroyed, some amount of ener-
gy must be dissipated (converted into
heat). As an example, imagine two eas-
ily distinguishable physical situations,
such as a rubber ball held either one
meter or two meters off the ground. If
the ball is dropped, it will bounce. If
there is no friction and the ball is per-
fectly elastic, an observer will always
be able to tell what state the ball start-
ed out in (that is, what its initial height
was) because a ball dropped from two
meters will bounce higher than a ball
dropped from one meter.

If there is friction, however, the ball
will dissipate a small amount of ener-
gy with each bounce, until it eventual-
ly stops bouncing and comes to rest
on the ground. It will then be impos-
sible to determine what the ball's ini-
tial state was; a ball dropped from
two meters will be identical with a ball
dropped from one meter. Information
will have been lost as a result of ener-
gy dissipation.

Here is another example of informa-
tion destruction: the expression
2 7T 2 contains more information than
the expression =4. If all we know is
that we have added two numbers to
yield 4, then we do not know whether
we have added 1 +3,2+2,0+4 or
some other pair of numbers. Since the
output is implicit in the input, no com-
putation ever generates information.

In fact, computation as it is current-
ly carried out depends on many opera-
tions that destroy information. The so-
called and gate is a device with two
input lines, each of which may be set at
1 or 0, and one output, whose value
depends on the value of the inputs. If
both inputs are 1, the output will be 1.
If one of the inputsis O or if both areO,
the output will also be 0. Any time the
gate's output is a 0 we lose informa-
tion, because we do not know which
of three possible states the input lines
were in (0 and 1, 1 and O, or 0 and 0).
In fact, any logic gate that has more in-
put than output lines inevitably dis-
cards information, because we cannot
deduce the input from the output.
Whenever we use such a "logically ir-
reversible" gate, we dissipate energy
into the environment. Erasing a bit of
memory, another operation that is fre-
quently used in computing, is also fun-
damentally dissipative; when we erase
a bit, we lose all information about
that bit's previous state.

Are irreversible logic gates and era-
sures essential to computation? If they
are, any computation we perform has
to dissipate some minimum amount
of energy.

As one of us (Bennett) showed in
1973, however, they are not essential.
This conclusion has since been demon-
strated in several models; the easiest of
these todescribe are based on so-called
reversible logic elements such as the
Fredkin gate, named for Edward Fred-
kin of the Massachusetts Institute
of Technology. The Fredkin gate has
three input lines and three outputs.
The input on one line, which is called
the control channel, is fed unchanged
through the gate. If the control channel
is set at O, the input on the other two
lines also passes through unchanged. If
the control line is a 1, however, the
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CONVENTIONAL COMPUTING DEVICES, the abacus and the
logic chip, both dissipate energy when they are operated. The “log-
ic gates" central to the design of a chip expend energy because they
discard information. A chip consumes energy for a less fundamen-
tal reason as well: it employs circuits that draw power even when
they merely hold information and do not process it. The abacus is
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dissipative because of friction between its beads and rods. It could
not be built of frictionless components: if there were no static fric-
tion, the beads’ positions would change under the influence of ran-
dom thermal motion. Static friction exerts a certain minimum force
no matter what the beads' velocity, and so there is some minium en-
ergy that the abacus requires no matter how slowly it is operated.
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outputs of the other two lines are
switched: the input of one line be-
comes the output of the other and vice
versa. The Fredkin gate does not dis-
card any information; the input can al-
ways be deduced from the output.

Fredkin has shown that any logic de-
vice required in a computer can be im-
plemented by an appropriate arrange-
ment of Fredkin gates. To make the
computation work, certain input lines
of some of the Fredkin gates must be
preset at particular values [seelower il-
lustration below].

Fredkin gates have more output
lines than the gates they are made to
simulate. In the process of computing,
what seem to be "garbage bits," bits of
information that have no apparent use,
are therefore generated. These bits
must somehow be cleared out of the
computer if we are to use it again, but
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if we erase them, it will cost us all
the energy dissipation we have been
trying to avoid.

Actually these bits have a most im-
portant use. Once we have copied
down the result of our computation,
which will reside in the normal output
bits, we simply run the computer in
reverse. That is, we enter the "gar-
bage bits" and output bits that were
produced by the computer's normal
operation as "input" into the "back
end" of the computer. This is possible
because each of the logic gates in the
computer is itself reversible. Running
the computer in reverse discards no in-
formation, and so it need not dissipate
any energy. Eventually the computer
will be left exactly as it was before the
computation began. Hence it is possi-
ble to complete a "computing cycle” —
to run a computer and then to return
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CONVENTIONAL LOGIC GATES dissipate energy because they discard information.
For example, if the output of an and gate is 0, there is no way to deduce what the input was.
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FREDKIN REVERSIBLE LOGIC GATE need not dissipate energy; the input can always
be deduced from the output. The gate has a “control” line, the value of which is not changed
by the gate. If the bit on the control line is a 0, the values of the other two lines are also un-
touched; if it is a I, however,the input of line A becomes the output of line B and vice versa.
Reversible gates can be arranged to implement any function performed by an irreversible
gate. T o implement the and operation (right) one input is preset to equal 0, and two output
bits, called garkage bits, are temporarily ignored. When the computation is complete, these
bits are used to operate the gate in reverse, returning the computer to its original state.
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it to its original state—-without dissi-
pating any energy.

So far we have discussed a set of log-

ic operations, not a physical device.
It is not hard, however, to imagine
a physical device that operates as a
Fredkin gate. In this device the infor-
mation channels are represented by
pipes. A bit of information is repre-
sented by the presence or absence of a
ball in a particular section of pipe; the
presence of a ball signifies a 1 and the
absence of a ball signifies a 0.

The control line is represented by a
narrow segment of pipe that is split
lengthwise down the middle. When a
ball enters the split segment of pipe, it
pushes the two halves of the pipe
apart, actuating a switching device.
The switching device channels any in-
put balls that may be in the other two
pipes: when a ball is present in the con-
trol line, any ball that enters an input
pipe is automatically redirected to the
other pipe. To ensure that the switch is
closed when no control ball is present,
there are springs that hold the two
halves of the split pipe together. A ball
entering the split pipe must expend en-
ergy when it compresses the springs,
but this energy is not lost; it can be
recovered when the control ball leaves
the split pipe and the springs expand.

All the balls are linked together and
pushed forward by one mechanism, so
that they move in synchrony; other-
wise we could not ensure that the vari-
ous input and controlling balls would
arrive at a logic gate together. In a
sense the forward progress of the com-
putation is really rhotion along a sin-
gle degree of freedom, like the motion
of two wheels rigidly attached to one
axle. Once the computation is done we
push all the balls backward, undoing
all the operations and returning the
computer to its initial state.

If the entire assembly is immersed in
an ideal viscousfluid, then the friction-
al forces that act on the balls will be
proportional to their velocity; there
will be no static friction. The frictional
force will therefore be very weak if we
are content to move the balls slowly.In
any mechanical system the energy that
must be expended to work against fric-
tion is equal to the product of the fric-
tional force and the distance through
which the system travels. (Hence the
faster a swimmer travels between two
points, the more energy he or she will
expend, although the distance traveled
is the same whether the swimmer is
fast or slow.) If we move the balls
through the Fredkin gates at a low
speed, then the energy expended (the
product of force and distance) will be
very small, because the frictional force
depends directly on the balls' speed. In



CONTROL CHANNEL

IDEALIZED PHYSICAL REALIZATION of a Fredkin gate sub-
stitutes pipes for wires and the presence or absence of a ball for a
1 or 0. A narrow, split segment of pipe representsthe control chan-
nel. When a ball passes through it, the pipe spreads apart, operating
a switching mechanism; the mechanism in turn switches any input
ball from line A to line B and vice versa. A pair of springs keeps the

fact, we can expend as little energy as
we wish, simply by taking a long time
to carry.out the operation. There is
thus no minimum amount of energy
that must be expended in order to per-
form any given computation.

he energy lost to friction in this

model will be very small if the ma-
chine is operated very slowly. Is it pos-
sible to design a more idealized ma-
chine that could compute without any
friction? Or is friction essential to the
computing process? Fredkin, together
with Tommaso Toffoli and others at
M.I.T., has shown that it is not.

They demonstrated that it is possible
to do computation by firing ideal, fric-
tionless billiard ballsatone another. In
the billiard-ball model perfect reflect-
ing "mirrors," surfaces that redirect
the balls' motion, are arranged in such
a way that the movement of the balls
across a table emulates the movement
of bits of information through logic
gates [see illustration on next page].As
before, the presence of a ball in a par-
ticular part of the computer signifies a
1, whereas the absence of a ball signi-
fies a 0. If two balls arrive simulta-
neously at a logic gate, they will collide
and their paths will change; their new
paths represent the output of the gate.
Fredkin, Toffoli and others have de-

TO SWITCHING MECHANISM

1

scribed arrangements of mirrors that
correspond to different types of logic
gate,and they have shown that billiard-
ball models can be built to simulate
any logic element that is necessary for
computing.

To start the computation we fire a
billiard ball into the computer wherev-
er we wish to input a 1. The balls must
enter the machine simultaneously.
Since they are perfectly elastic, they
do not lose energy when they collide;
they will emerge from the computer
with the same amount of kinetic ener-
gy we gave them at the beginning.

In operation a billiard-ball comput-
er produces '"garbage bits," just as a
computer built of Fredkin gates does.
After the computer has reached an an-
swer we reflect the billiard balls back
into it, undoing the computation. They
will come out of the machine exactly
where we sent them in, and at the same
speed. The mechanism that launched
them into the computer can then be
used to absorb their kinetic energy.
Once again we will have performed a
computation and returned the com-
puter to its initial state without dissi-
pating energy.

The billiard-ball computer has one
major flaw: it is extremely sensitive to
slight errors. If a ball is aimed slightly
incorrectly or if a mirror is tilted at a

control channel closed when no ball is in it. This gate does not need
static friction in order to operate; it could be immersed in a viscous
fluid, and the frictional forces could be made to depend only on
the balls' velocity. Then the energy dissipation could be as small as
the user wished: to lower the amount of energy dissipated, it would
only be necessary to drive the balls through the device more slowly.

slightly wrong angle, the balls' trajec-
tories will go astray. One or more balls
will deviate from their intended paths,
and in due course errors will combine
to invalidate the entire computation.
Even if perfectly elastic and friction-
less billiard balls could be manufac-
tured, the small amount of random
thermal motion in the molecules they
are made of would be enough to cause
errors after a few dozen collisions.
Of course we could install some kind
of corrective device that would return
any errant billiard ball to its desired
path, but then we would be obliterat-
ing information about the ball's ear-
lier history. For example, we might
be discarding information about the
extent to which a mirror is tilted incor-
rectly. Discarding information, even
to correct an error,can be done only in
a system in which there is friction and
loss of energy. Any correctional device
must therefore dissipate some energy.
Many of the difficulties inherent in
the billiard-ball computer can be made
less extreme if microscopic or submi-
croscopic particles, such as electrons,
are used in place of billiard balls. As
Wojciech H. Zurek, who is now at the
Los Alamos National Laboratory, has
pointed out, quantum laws, which can
restrict particles to a few states of mo-
tion, could eliminate the possibility



that a particle might go astray by a
small amount.

Although the discussion so far has
been based primarily on classical dy-
namics, several investigators have pro-
posed other reversible computers that
are based on quantum-mechanical
principles. Such computers, first pro-
posed by Paul Benioff of the Argonne
National Laboratory and refined by
others, notably Richard P. Feynman
of the California Institute of Technol-
ogy, have so far been described only in
the most abstract terms. Essentially
the particles in these computers would
be arranged so that the quantum-me-
chanical rules governing their interac-
tion would be precisely analogous to
the rules describing the predicted out-
puts of various reversible logic gates.
For example, suppose a particle's spin
can have only two possible values: up
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(corresponding to a binary 1) and down
(corresponding to a 0). The interac-
tions between particle spins can be pre-
scribed in such a way that the value of
one particle's spin changes depending
on the spin of nearby particles; the spin
of the particle would correspond to
one of the outputs of a logic gate.

So far this discussion has concentrat-
ed on information processing. A
computer must store information as
well as process it. The interaction be-
tween storage and processing is best
described in terms of a device called a
Turing machine, for Alan M. Turing,
who first proposed such a machine
in 1936. A Turing machine can per-
form any computation that can be per-
formed by a modern computer. One of
us (Bennett) has shown that it is possi-
ble to build a reversible Turing ma-

a INPUT

FIXED INPUT

0

O

chine: a Turing machine that does not
discard information and can therefore
be run with as small an expenditure of
energy as the user wishes.

A Turing machine has several com-
ponents. There is a tape, divided into
discrete frames or segments, each of
which is marked with a O or a 1; these
bits represent the input. A “read/write
head" moves along the tape. The head
has several functions. It can read one
bit of the tape ata time, it can print one
bit onto the tape and it can shift its
position by one segment to the left or
right. In order to remember from one
cycle to the next what it is doing, the
head mechanism has a number of-dis-
tinct "states'; each state constitutes a
slightly different configuration of the
head's internal parts.

In each cycle the head reads the bit
on the segment it currently occupies;

OUTPUT
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BILLIARD-BALL COMPUTER employs the movement of bil-
liard balls on a table to simulate the movement of bits through logic
gates. In billiard-ball logic gates (left) the balls’ paths are redirected
by collisions with one another or with reflecting “mirrors.” In addi-
tion to their role in gates, mirrors can deflecta ball's path (a), shift
the pathsideways (b), delay the balP’s motion withoutchangingitsfinal
direction or position (¢) or allow two lines to crass (d). It is possible
to arrange mirrors so that the resulting “computer” implements the

function of any logic chip. For example, a billiard-ball computer
could be made to test whether a number is prime. One such comput-
er (righf) accepts as input any five-bit number (in this case 01101,
or 13) and the fixed input sequence O1. Like a Fredkin gate, a bil-
liard-ball computer typically returns more output bits than its user
needs. In the case shown, the computer returns the original input
number itself (which is the “extra” output), and an "answer" se-
quence: 10 if the input number is prime and 01 if it is composite.



then it prints a new bit onto the tape,
changes its internal state and moves
one segment to the left or right. The bit
it prints, the state it changes into and
the direction in which it moves are de-
termined by a fixed set of transition
rules. Each rule specifies a particular
set of actions. Which rule the machine
follows is determined by the state of
the head and the value of the bit that it
reads from the tape. For example, one
rule might be: "If the head is in state A
and is sitting on a segment of tape that
is printed with a 0, it should change
thatbittoa 1,change itsstate tostate B
and move one segment to the right." It
may happen that the transition rule in-
structs the machine not to change its
internal state, not to print a new bit
onto the tape or to halt its operation.
Not all Turing machines are revers-
ible, but a reversible Turing machine
can be built to perform any possible
computation.

The reversible Turing-machine
models have an advantage over such
machines as the frictionless billiard-
ball computer. In the billiard-ball
computer random thermal motion
causes unavoidable errors. Reversible
Turing-machine models actually ex-
ploit random thermal motion: they
are constructed insuch a way that ther-
mal motion itself, with the assistance
of a very weak driving force, moves
the machine from one state to the
next. The progress of the computa-
tion resembles the motion of an ion (a
charged particle) suspended in a solu-
tion that is held in a weak electric field.
The ion's motion, as seen over a short
period of time, appears to be random;
it is nearly as likely to move in one
direction as in another. The applied
force of the electric field, however,
gives the net motion a preferred direc-
tion: the ion is a little likelier to move
in one direction than in the other.

It may at first seem inconceivable
that a purposeful sequence of opera-
tions, such as a computation, could be
achieved in an apparatus whose direc-
tion of motion at any one time is near-
ly random. This style of operation is
quite common, however, in the micro-
scopic world of chemical reactions.
There the trial-and-error action of
Brownian motion, or random thermal
motion, suffices to bring reactant mol-
ecules into contact, to orient and bend
them into the specific conformation re-
quired for them to react, and to sepa-
rate the product molecules after the
reaction. All chemical reactions are in
principle reversible: the same Brown-
ian motion that accomplishes the for-
ward reaction sometimes brings prod-
uct molecules together and pushes
them backward through the transition.
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TURING MACHINE can be constructed in such a way that it can perform any computa-
tion a computer can. An infinitely long tape is divided into discrete segments, each of which
bears either a 0 or a 1. A “read/write head," which can be in any of several internal states
(here there are only two states, A and B), moves along the tape. Each cycle begins as the
head reads one bit from a segment of the tape.Then, in accordance with a fixed set of transi-
tion rules, it writesa bit onto that segment, changes its own internalstate and moves one seg-
ment to the left or right. This Turing machine, because it has only two head states, can do
only trivial computations; more complicated machines with more head states are capable
of simulating any computer, even one much more complicated than themselves. To do so
they store a representation of the larger machine's complete logical state on the unlimited
tape and break down each complex cycle into a large number of simple steps. The ma-
chine shown is logically reversible: it is always possible to deduce the machine's previous
configuration. Other Turing machines, with different transition rules, are not reversible

In a state of equilibrium a backward
reaction is just as likely to occur as a
forward one.

In order to keep a reaction moving in
the forward direction, we must supply
reactant molecules and remove prod-
uct molecules; in effect, we must pro-
vide a small driving force. When the
driving force is very small, the reaction
will take nearly as many backward
steps as forward ones, but on the aver-
age it will move forward. In order to
provide the driving force we must ex-
pend energy, but as in our ball-and-
pipe realization of the Fredkin gate
the total amount of energy can be as
small as we wish; if we are willing to
allow a long time for an operation,
there is no minimum amount of ener-
gy that must be expended. The reason
is that the total energy dissipated de-
pends on the number of forward steps
divided by the number of backward
steps. (It isactually proportional to the
logarithm of this ratio, but as the ratio
increases or decreases so does its loga-
rithm.) The slower the reaction moves
forward, the smaller the ratio will be.
(The apalogy of the faster and slower
swimmers is valid once again: it re-
quires less total energy to go the same
net number of reaction steps ,forward
if the reaction moves slowly.)

We can see how a Brownian Turing
machine might work by examin-
ing a Brownian tape-copying machine
that already exists in nature: RNA
polymerase, the enzyme that helps to
construct RNA copies of the DNA

constituting a gene. A single strand of
DNA is much like the tape of a Turing
machine. At each position along the
strand there is one of four "bases":
adenine, guanine, cytosine or thymine
(abbreviated A, G, C and T).RNA is
a similar chainlike molecule whose
four bases, adenine, guanine, cytosine
and uracil (A, G, C and U) bind to
"complementary'" DNA bases.

The RNA polymerase catalyzes this
pairing reaction. The DNA helix is
normally surrounded by a solution
containing a large number of nucleo-
side triphosphate molecules,each con-
sisting of an RNA base linked to a
sugar and a tail of three phosphate
groups. The RNA-polymerase enzyme
selects from the solution a single RNA
base that is complementary to the base
about to be copied on the DN A strand.
It then attaches the new base to the end
of the growing RNA strand and releas-
es two of the phosphates into the sur-
rounding solution as a free pyrophos-
phate ion. Then the enzyme shifts for-
ward one notch along the strand of
DNA in preparation for attaching the
next RNA base. The result is a strand
of RNA that is complementary to the
template strand of DNA. Without
RNA polymerase this set of reactions
would occur very slowly, and there
would be little guarantee that the RNA
and DNA molecules would be com-
plementary.

The reactions are reversible: some-
times the enzyme takes up a free pyro-
phosphate ion, combines it with the
last base on the RNA strand and re-
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leases the resulting nucleoside triphos-
phate molecule into the surrounding
solution, meanwhile backing up one
notch along the DN A strand. At equi-
librium, forward and backward steps
would occur with equal frequency;
normally other metabolic processes
drive the reaction forward by remov-
ing pyrophosphate and supplying the
four kinds of nucleoside triphosphate.
In the laboratory the speed with which
RNA polymerase acts can be varied by
adjusting the concentrations of the re-
actants (as Judith Levin and Michael
J. Chamberlin of the University of
California at Berkeley have shown).
As the concentrations are brought
closer to equilibrium the enzyme
works more slowly and dissipates less
energy to copy a given section of
DNA, because the ratio of forward to
backward steps is smaller.

Athough RNA polymerase merely
copies information without proc-
essing it, it is relatively easy to imagine
how a hypothetical chemical Turing
machine might work. The tape is a sin-
gle long backbone molecule to which
two types of base, representing the bi-
nary O and 1,attach at periodic sites. A
small additional molecule is attached
tothe O or 1 group at one site along the
chain. The position of this additional
molecule represents the position of

the Turing machine's head. There are
several different types of "head mole-
cule," each type representing a differ-
ent machine state.

The machine's transition rules are
represented by enzymes. Each enzyme
is capable of catalyzing one particular
reaction. The way these enzymes work
is best demonstrated by an example.

Suppose the head molecule is type
A (indicating that the machine is in
state A) and is attached to a O base.
Also suppose the following transition
rule applies: "When the head is in state
A and reads a 0, change the 0 to a 1,
change state to B and move to the
right." A molecule of the enzyme rep-
resenting this rule has a site that fits a
type-A head molecule attached to a 1
base. It also has one site that fits a 0
base and one site that fits a B head [see
illustration on opposite page].

To achieve the transition, the en-
zyme molecule first approaches the
tape molecule at a location just to the
right of the base on which the A head
resides. Then it detaches from the tape
both the head molecule and the 0 base
to which the head was attached, put-
ting in their place a 1 base. Next it
attaches a B head to the base that is to
the right of the 1 base it has just added
to the tape. At this point the transition
is complete. The head's original site is
changed froma O toa 1, the head mole-
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RNA POLYMERASE

RNA POLYMERASE, an enzyme, acts as a reversible tape-copying machine; it catalyzes
the reaction that constructs RNA copies of segments of DNA. As the enzyme moves along
a strand of DNA, it selects from the surroundingsolution a nucleoside triphosphate mole-
cule (an RN A base bound to a sugar and a "tail" of three phosphate groups) that is comple-
mentary to the DN A base about to be copied. It then attaches the new base to the end of the
RNA strand and releases a free pyrophosphaie ion consisting of two phosphates. The reac-
tion is reversible:sometimes the enzyme takes up the last link of RNA, attaches itto a pyro-
phosphate ion and returns the resulting molecule to the solution, backing up a notch on the
DNA strand. When the reaction is close to chemical equilibrium,the enzyme takes almost
as many backward as forward steps and the total energy needed to copy any segment of
DNA is very small. The reaction can be made less dissipative by being run more slowly;
there is no minimum amount of energy that must be expended to copy a segment of DNA.
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cule is now a type B, and it is attached
to the base that is one notch to the right
of the previous head position.

During the operation of a Brownian
Turing machine the tape would have
to be immersed in a solution contain-
ing many enzyme molecules, as well
as extra Ofs, I's, A's and B's. To drive
the reaction forward there would have
to be some other reaction that cleaned
the enzyme molecules of detached
heads and bases. The concentrations
of the reactants that clean the enzyme
molecules represent the force that
drives the Turing machine forward.
Again we can expend as little energy
as we wish simply by driving the ma-
chine forward very slowly.

The enzymatic Turing machine
would not be error-free. Occasionally
a reaction that is not catalyzed by any
enzyme might occur; for example, a 0
base could spontaneously detach itself
from the backbone molecule and a 1
base could be attached in its place.
Similar errors do indeed occur during
RNA synthesis.

In principle it would be possible to
eliminate errors by building a Brown-
ian Turing machine out of rigid, fric-
tionless clockwork. The clockwork
Turing machine involves less idealiza-
tion than the billiard-ball computer
but more than the enzymatic Turing
machine. On the one hand, its parts
need not be manufactured to perfect
tolerances, as the billiard balls would
have to be; the parts fit loosely togeth-
er, and the machine can operate even
in the presence of a large amount of
thermal noise. Still, its parts must be
perfectly rigid and free of static fric-
tion, properties not found in any mac-
roscopic body.

Because the machine's parts fit to-
gether loosely, they are held in place
not by friction but by grooves or
notches in neighboring parts [seeillus-
tration on page 56]. Although each part
of the machine is free to jiggle a lit-
tle, like the pieces of a well-worn
wood puzzle, the machine as a whole
can only follow one "computational
path." That is, the machine's parts in-
terlock in such a way that at any time
the machine can make only two kinds
of large-scale motion: the motion cor-
responding to a forward computation-
al step and that corresponding to a
backward step.

The computer makes such transi-
tions only as the accidental result of
the random thermal motion of its parts
biased by the weak external force. It is
nearly as likely to proceed backward
along the computational path, undoing
the most recent transition, as it is to
proceed forward. A small force, pro-
vided externally, drives the computa-
tion forward. This force can again be



as small as we wish, and so there is no
minimum amount of energy that must
be expended in order to run a Brown-
ian clockwork Turing machine.

A:cording toclassical thermodynam-
ics, then, there is no minimum
amount of energy required in order to
perform a computation. Is the classi-
cal thermodynamical analysis in con-
flict with quantum theory? After all,
the quantum-mechanical uncertainty
principle states there must be an in-
verse relation between our uncertain-
ty about how long a process takes and
our uncertainty about how much ener-
gy the process involves. Some investi-
gators have suggested that any switch-
ing process occurring in a short period
of time must involve a minimum’ ex-
penditure of energy.

In fact the uncertainty principle
does not require any minimum energy
expenditure for a fast switching event.
The uncertainty principle would be ap-
plicable only if we attempted to meas-
ure the precise time at which the event
took place. Even in quantum mechan-
ics extremely fast events can take
place without any loss of energy. Our
confidence that quantum mechanics
allows computing without any mini-
mum expenditure is bolstered when
we remember that Benioff and oth-
ers have developed models of reversi-
ble quantum-mechanical computers,
which dissipate no energy and obey
the laws of quantum mechanics.

Thus the uncertainty principle does
not seem to place a fundamental limit
on the process of computation; neither
does classical thermodynamics. Does
this mean there are no physical limita-
tions to computing? Far from it. The
real limitations are associated with
questions that are much harder to an-
swer than those we have asked in this
article. For example, do elementary
logic operations require some mini-
mum amount of time? What is the
smallest possible gadgetry that could
accomplish such operations? Because
scales of size and time are connected
by the velocity of light, it is likely that
these two questions have related an-
swers. We may not be able to find these
answers, however, until it is deter-
mined whether or not there is,some
ultimate graininess in the universal
scales of time and length.

At the other extreme, how large can
we make a computer memory? How
many particles in the universe can we
bring and keep together for that pur-
pose? The maximum possible size of a
computer memory limits the precision
with which we can calculate. It will
limit, for example, the number of deci-
mal places to which we can calculate
pi. The inevitable deterioration proc-
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HYPOTHETICAL ENZYMATIC TURING MACHINE could perform a computation
with no minimum expenditure of energy. Molecules representing 0 and 1 bits are attached
at periodic intervals to a backbone molecule. A small additional molecule, representing the
Turing machine's head, is attached to the 0 or 1 group at one site on the chain (I).There
are several types of- head molecule, each type representing a different internal machine
state. Transition rules are represented by enzymes. In each cycle an enzyme attaches itself
to the head molecule and the bit molecule to which the head is attached (2); then it detaches
them from the chain, putting in their place the appropriate bit molecule (3). As it does so it
rotates, so that it attaches the appropriate head molecule to the bit that occupies the site one
notch to the right or left of the hit it has just changed. Now the cycle is complete (4): the
value of a bit has been changed, and the head has changed state and shifted its position.
Each kind of enzyme is able to catalyze one such set of reactions. As in the case of RNA
synthesis, these reactions can be made to dissipate an arbitrarily small amount of energy.



esses that occur in real computers pose
another, perhaps related, question:
Can deterioration, at least in principle,
be reduced to any desired degree, or
does it impose a limit on the maximum
length of time we shall be able to de-
vote to any one calculation? That is,

are there certain calculations that can-
not be completed before the comput-
er's hardware decays into uselessness?

Such questions really concern limi-
tations on the physical execution of
mathematical operations. Physical
laws, on which the answers must ulti-

mately be based, are themselves ex-
pressed in terms of such mathematical
operations. Thus we are asking about
the ultimate form in which the laws of
physics can be applied, given the con-
straints imposed by the universe that
the laws themselves describe.
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BROWNIAN CLOCKWORK TURING MACHINE, made out
of rigid, frictionless parts, relies on random jiggling of its loosely
fitted parts to change from state to state. When a part is held in
place, it is not by friction but by grooves or notches in neighboring
parts. Parts interlock in such a way that they can follow only one
"computational patb"; although they are free to jiggle a little, the
only large-scale motions they can make correspond to forward or
backward computational steps. The operation of the machine is
driven slowly forward by a very weak force; at any instant the ma-
chine is almost as likely to move backward as forward. On the aver-
age, however, the machine will move forward and the computation
will eventually end. The machine can be made to dissipate as small
an amount of energy as the user wishes, simply by employing a
force of the correct weakness. Segments of tape are represented by
grooved disks; bits are represented by E-shaped blocks, which are
locked onto the disks in either the up (1)or the down (0) position.
The head consists of a rigid framework and a complicated mecha-
nism (most of which is not shown) from which are suspended a read-
er, a manipulator and a screwdriver-shaped rod. The machine's
operation is controlled by a grooved "master camshaft," which re-
sembles a phonograph record (top left and far right); different
grooves correspond to different head states. At the beginning of a
cycle the head is positioned above one of the disks and a “stylus” is
in the "read " segment of the groove in the master camshaft that cor-
responds to the machine's current head state. During the “read”
part of the cycle (1) the reader determines whether the disk's "bit*
block is up or down by a process called an obstructive read (center

right). In an obstructive read the reader moves past the block, fol-
lowing a high or a low path; one of the paths will be obstructed by
the knob on the end of the block, and so there will be only one path
for the reader to follow. At the point on the master camshaft that
corresponds to this "decision" the grooves branch; each groove
splits into two, and the stylus is guided into the groove that corre-
sponds to the bit's value (2). Then the master camshaft turns until
the stylus is in the "write" segment (3).In this segment each groove
contains a different set of "instructions' for the machine to follow;
the instructions are transmitted by a complex linkage between the
stylus and the rest of the mechanim. If the instructions call for the
bit's value to change, the manipulator moves over and grasps the
knob; then the screwdriver rotates the disk until the block is free to
move, the manipulator moves the block up or down and the screw-
driver rotates the disk again to hold the block in place. After the
stylus passes through the “write” segment of the master camshaft it
enters the "shift" segment (4). Each groove in this segment contains
instructions to move the head one segment to the left or right. Then
the stylus enters the "change state" segment of the camshaft (5),
where grooves merge in such a way that the stylus falls into the
groove representing the next head state. The cycle is now complete
(6). Disks adjacent to the one being read are held in place by the
head's framework. Disks that are farther away are held by "locking
tabs." The locking tab on each disk is coupled to a special bit, called
the Q bit, on an adjacent disk. The linkages between Q bits and
locking tabs are constructed so that the disk currently being read
is free to move, while disks far to the right or left are held still.
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Abstract. We examine the time evolution of cold atoms (impurities) interacting
with an environment consisting of a degenerate bosonic quantum gas. The
impurity atoms differ from the environment atoms, being of a different species.
This allows one to superimpose two independent trapping potentials, each being
effective only on one atomic kind, while transparent to the other. When the
environment is homogeneous and the impurities are confined in a potential
consisting of a set of double wells, the system can be described in terms of
an effective spin-boson model, where the occupation of the left or right well
of each site represents the two (pseudo)-spin states. The irreversible dynamics
of such system is here studied exactly, i.e. not in terms of a Markovian master
equation. The dynamics of one and two impurities is remarkably different in
respect of the standard decoherence of the spin-boson system. In particular,
we show: (i) the appearance of coherence oscillations, (ii) the presence of
super and subdecoherent states that differ from the standard ones of the
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spin-boson model, and (iii) the persistence of coherence in the system at long
times. We show that this behaviour is due to the fact that the pseudospins
have an internal spatial structure. We argue that collective decoherence also
prompts information about the correlation length of the environment. In a
one-dimensional (1D) configuration, one can change even more strongly the
qualitative behaviour of the dephasing just by tuning the interaction of the bath.
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1. Introduction

The reasons for the great interest in the physics of ultracold atoms in recent years are
manifold. On the one hand, experimentalists have reached an unprecedented control over
the many-body atomic state with very stable optical potentials and by the use of Feshbach
resonances, which allow one to change the scattering length of the atoms [1]. In this context,
the tremendous experimental results that have been achieved include: the observation of the
superfluid-Mott insulator transition for bosons [2], one-dimensional (1D) strongly interacting
bosons in the Tonks—Girardeau regime [3] and Anderson localization [4, 5]. On the other hand,
new experimental challenges come from different theoretical proposals for using this system for
quantum information processing [6] and as a quantum simulator of condensed matter models
(see for example [7]-[9] and references therein).

Not only can ultracold atoms simulate Hamiltonian systems, but such systems also offer
a way to engineer non-classical environments. Thanks to the flexibility of quantum gases, a
broad range of regimes of irreversible dynamics of open quantum systems and in particular of
spin-boson systems can be explored [10]-[12].

In the present paper, we propose a new method by which an instance of the spin-
boson model [13] can be realized with a suitable arrangement of interacting cold atoms. In
particular, we analyse a system consisting of cold impurity atoms interacting with a degenerate
quantum gas of a different atomic species. This setup makes possible the superposition of
two independent trapping potentials, each being effective on one atomic species only, while
transparent to the other. When the quantum gas is homogeneous and the impurities are confined

New Journal of Physics 11 (2009) 103055 (http://www.njp.org/)
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in a potential composed of double wells, the system can be described in terms of an effective
spin-boson model, where occupations of the left or right well represent the two (pseudo)-spin
states. At variance with other setups, where the role of the pseudospin is played by the presence
or absence of one particle in a trapping well [14], by the vibrational modes of a single well [15]
or by internal electronic levels [12], in our case each pseudospin has a spatial dimension,
namely the separation between the two minima of the impurity double well. This introduces an
effective suppression of the decoherence due to low-frequency modes of the environment and
leads to unusual and interesting phenomena, like oscillations of coherence at finite times and
the survival of coherence at long times. Further novel features appear when one considers the
irreversible collective decoherence of a systems of two impurities. In this case, we still predict
the existence of subdecoherent and superdecoherent states, but with the interesting fact that their
role is exactly the opposite from what one observes in conventional spin-boson systems. Further
interesting features appear when one considers how the collective decoherence rates change as
a function of the impurities’ separation and the effects of dimensionality of the system.

In discussing our investigations, for the sake of simplicity we shall consider an
experimental setup where the impurity atoms are trapped by a periodic (optical) lattice. We
would like to stress, however, that our findings do not depend on the lattice properties (e.g.
periodicity) but on the numerical results. Other setups, such as microtraps on atom chips or
quantum dots, just to mention a few, can be equally envisaged.

2. The Hamiltonian

Our system is composed of a cold quantum gas of bosonic atoms and a sample of cold atoms
separated from each other and immersed in the quantum gas. In presenting our investigations, we
shall use the words ‘reservoir’, ‘bath’ and ‘environment’ as synonyms to indicate the quantum
gas, since its properties are not the focus of the present paper.

The second-quantized form of the Hamiltonian of the impurities + bath system takes the
form (see also [16])

I_}:ﬁA'i'I_}B'i'I_}AB, (1)

where
2

Hy= /d3x U (x) [2% + VA(X)] U (x) )
A

is the Hamiltonian of atomic impurities, described by the field operator U (x) in the trapping
potential V4 (x), which creates a set of double wells of size 2L and separated by a distance 2D,
see figure 1,

2

Hy = /d3x &' (x) [% +Ve(X) + %B &' (x)é(x)] d(x) 3)
B

is the Hamiltonian of the bath, composed of N >> 1 bosons, represented by the field operator
®(x) and confined by a trapping potential Vg(x) and gg = 4whag/myg is the boson—boson
coupling constant, with ag the scattering length of the condensate atoms, and

Hap = gan /d3x Ui (x) D (x) D (x) ¥ (x) 4)
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Valx)

Impurity atom W
2L

Figure 1. A Bose-Einstein condensate (yellow region) confined in a shallow
harmonic trap Vg (x) interacts with cold impurity atoms each of which is trapped
in a double well potential V4 (x) (grey circle). The distance between two wells in
the same trap is 2L and the distance between adjacent traps is 2D.

describes the interactions between the impurities and the bath; here gag = 27 hlag /MaB
is the coupling constant of impurities—gas interaction, with asp the scattering length of the
impurities—gas collisions and mag = mampg/(ma +mg) their reduced mass. Both impurity and
bath atoms are described in the second-quantized formalism. The field operator of the atomic
impurities

b= 4,0, (5)
i,p
can be decomposed in terms of the real eigenstates ¢; ,(x) of impurity atoms localized on the
double well i of the potential V4(x) in the p™ state, with energy fw; , and the corresponding
annihilation operator 4, ,. We assume that the wavefunctions of different double wells have a
negligible common support, i.e. @; ,(X)@;-; »(X) 2 0 at any position X.
We treat the gas of bosons following Bogoliubov’s approach (see, for instance, [17]) and
assuming a very shallow trapping potential V5 (x), such that the bosonic gas can be considered
homogeneous. In the degenerate regime, the bosonic field can be decomposed as

D(x) = /Ny Po(x) +8D(x) = /No Do(x)+ Y (uk<x>ék ~ v;<x>61) . ®
Kk
where ®y(x) is the condensate wave function (or order parameter), Ny < N is the number of

atoms in the condensate and ¢, 81T( are the annihilation and creation operators of the Bogoliubov

modes with momentum k. For a homogeneous condensate ®(x) =1/ VV,V being the volume.
Its Bogoliubov modes

1 €x +nogp Cik'x
= [= +1 , 7
Uk \/ 5 ( Ey ) JV (7
1 [ex+ nogs 1 eikx (8)
=, =|—>——
V2 E JV
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have energy

1/2
Ey = [Zékl/l()g]g +E§] / , (9)

where ¢, = h2k2/ (2mg) and no = Ny/V is the condensate density. As one can see from (9),
low-energy excitations have phonon-like (wave-like) spectrum, whereas high-energy excitations
have particle-like spectrum. The condition for wave-like excitations is €x < nogs, i.e. kK K
4,/mnoag, or equivalently k < 2mgcg/h, where ¢ = \/nogg/m is the speed of sound at zero
temperature. Note that |ug| =1/ V'V and |vg| = 0 describe the limiting case of N > 1 non-
interacting bosons, each with energy Ey = €.

Inserting equations (5) and (6) into the Hamiltonian (1) we obtain

Ha=) hoi,d; ,a;, (10)
iL,p

for the impurities,
ﬁB :HCOnd"'ﬁBog (11)
for the quantum gas, with

2
Heona = No chx O} (x) [zf’n—B +VEx) + %B No|q>0(X)|2:| Do(x) (12)

for the condensate and
Hpoy =Y E\216, (13)
K
for the collective excitations (Bogoliubov modes) of energy Ey in the condensate, and

Hap=gas Y Y 4} ,d;, [NO f Exgr (X @i (X)|Po(x) [

i pg

+VNo Y & / &x i, ()i (%) (P Xk (X) — Do)k (X))
k

/N Y 8 / Ex g, (X1, (%) (Po(®u(x) — PRIV (%)) } (14)
k

for the interaction Hamiltonian; the terms that are quadratic in the Bogoliubov excitation
operators ¢, ¢’ give negligible contributions and have been omitted. The first term in (14)
describes transitions between impurities’ vibrational states due to the condensate, whereas
the remaining terms describe similar transitions induced by the collective excitations in the
condensate. In a homogeneous condensate, transitions between different vibrational eigenstates
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of the impurities induced by the condensate are suppressed, while all vibrational states ¢; ,(x)
get an energy shift dw; ,,

0, for ,
PNy [dx 1002 (X)gi (X g (%) = { . PEE )
nog" =dw; p, for p=gq
so the contribution of the first term in (14) can be included in the definition of w; .

In the limit of deep, symmetric wells in each double well and separated by a high-energy
barrier, the tunnelling between the adjacent wells is suppressed. In this regime, the ground states
@; L and ¢; r of, respectively, the left and right wells of double well i are well separated in space
with vanishing spatial overlap, their coupling to the excited states becomes negligible and the
total Hamiltonian further simplifies into

H= Z Z ho; it +ZEkack+Zh Z Z[ k8k+Q’ kék} ;, (16)

i, p=LR i p=LR k
where we have defined the coupling frequencies

sz;,k_gAB*/_u Kl — |vk|>fd3x|<ol,,(x>|e"”‘ (17)

and ﬁ; =4 4. is the number operator of impurities in the double well i in the well

p=L.R. "

We consider the case where each double well is occupied by at most one impurity atom.
This allows us to describe the occupation of the left and right wells of each site in terms
of pseudospin states. Introducing the Pauli operators as 71j = (1 —6})/2, iy = (1+67)/2, the
Hamiltonian (16) takes the form of the independent boson model [18]

4 L i i\ 2 i i A
H = Z Ekcltck 5 Z { [Z (QR,k - QL,k) o, + Z (QR,k + QL,k) i|Ck
k k i i
+ [Z (i — Q) 62 + Z (R k+ 2 ]*} : (18)

where a constant energy shift has been omitted. We note that spin-boson systems with
larger spin values can be realized in the same way with higher occupation of the double
wells.

The effects due to quantum noise on coherent superpositions of states of a double well
spin-boson Hamiltonian have been analysed in the Markovian regime. In [19]-[21] the effects
of a cold atom reservoir has been analysed, while [22] has considered the effects of scattered
photons, taking into account also the role of the inter-well separation. As we will show in
the following section, for our system it is possible to carry out a full analysis of the impurity
dynamics, going beyond the Markov approximation.

3. Exact reduced impurities dynamics

The dynamics due to the spin-boson Hamiltonian (18) is amenable to an exact analytical solution
and is characterized by decoherence without dissipation [23]—[25]. The time-evolution operator
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Ut) = exp [—iH? /1] corresponding to the Hamiltonian (18) can be factorized into a product
of simpler exponential operators,

U(t) = exp [ — % Z Ekéli@kt]
k

xexp| Y. <Z Al (1)6! +ak(t)) e (Z A¥(1)6! +a;§(t)> ek}
Lk i k i
I Qs — 2 (- 2)
xexp [ i) fi)R Y T 66/
i k ij k
I (@i~ i) T (2+ )
xexp [ 112 fuhhd S5 o
k i k

> (Qi{,k + QLk) Zj (Q{Jk + ka)

xexp |17 ) fi(t) T : (19)
k k
where the functions
E E
fi(t) = 7“: —sin 7‘%, (20)
. h (1 — eiEk’/h) . .
Alty=———— L (Qix —Qi* ), 1)
k 2Ek ( R,k L,k)
(1 — elfwt/n . .
o (1) = (Tk) Z (Qi{k + ka) , (22)

i

have been introduced for ease of notation. Details of the derivation of (19) for the time-evolution
operator are given in appendix A. As in this paper, we are interested in the irreversible collective
decoherence of the impurities we will focus our attention on the conditional displacement
operator

Up(®) =[] U ). (23)
k

Upp(1) = exp [(Z A (1)6! +ak(t)> o — (Z A (1)6! +a;;(z)> ek} . (24)

Indeed this operator is the one responsible of the decoherence of impurities as it induces
entanglement between them and the reservoir. Labelling the state of the impurities as [{n,}) =
l{n1, na, n3, ...}) with n,, =0, 1 denoting the presence of the atom, respectively, in the left or
right well, the matrix elements of reduced density operator of the impurities are

Pinytmy) () = XD [=T ). im) ()] 04, 1.1, (0) xp {iO ) m, (1) }
X exXp {iE{np},{mp}(t)} exp {iA{np},{mp}(t)} . (25)
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Assuming that each mode of the bosonic environment is in a mixed state px at equilibrium at
temperature 7 the decay exponent contains all the information concerning the time dependence
of the decoherence process and takes the form

2

1 (% — 94 ,)| coth % (26)

<1 cos E“t)
L), i) (1) =1 Z

with 8 = 1/KgT. The phase factors Oy, (m,) (1), (1), mp) 1(1) and Ay, ) 1m,) (1), Whose specific
form is given in appendix B, do not play any role in the decoherence [26]. They contain,
however, interesting information on the effective coupling between the pseudospins induced
by the condensate and will be analysed in a future paper [27].

4. Results for the decoherence

As mentioned in the introduction, we shall assume that the impurity atoms are trapped by
an optical (super)lattice, whose form can be controlled and varied in time with great accuracy
[28, 29]. The coupling frequencies Q;,k are accordingly evaluated in appendix C assuming an
optical lattice, with identical, double wells in each site, and deep trapping of impurity atoms
in their wells, with identical confinement in each direction. Atomic wavefunctions can then be
approximated by harmonic oscillator ground states of variance parameter o = /i/(mw) [30],
where w is the corresponding harmonic frequency. As will be clear shortly, o acts as a natural
cutoff parameter, quenching the coupling with high-frequency modes.

Specifically, we consider »?Na impurity atoms trapped in a far-detuned optical lattice
and a ®’Rb condensate. The condensate density is no = 10°m™3, the lattice wavelength is
A =600nm, and we have taken 2L = A/2 and D =2L. The depth of the optical lattice is
described by the parameter o« = V,/ Eg, V| being the optical lattice potential maximum intensity
and Eg = h’k?/(2m) the recoil energy of impurity atoms in the lattice; in our evaluations we
put o = 20. Finally, we assume aag = 55a¢ [31], where q is the Bohr radius, for the scattering
length of impurities—condensate mixtures. This parameter can be modified in laboratory with
the help of Feshbach resonances.

4.1. Single impurity decoherence
We first examine the decoherence exponent of a single impurity
(1 —Cos %t) /3 .
Fo(l)EF{O}’“}(I)EhZZ E2 ‘
k

k

Q-2 L[ 27)

This quantity, which will be a useful benchmark in our analysis of the collective decoherence of
impurity pairs, already shows interesting features. Assuming, from now on, that the condensate
is at temperature 7 = (0, we obtain

2 Ex

sin t
ro<r>—8gABnoZ<|uk| [ul)? 72— sin® (k- L) (28)

k
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Figure 2. I'y(¢) versus time for a single impurity atom interacting with free
bosons (solid line) and with a bosonic condensate (dashed line) in three
dimensions. The inset shows I'¢(#) for very short times 0 < ¢ < 2 us.

We note the dependence of I'y(#) on the length L, where 2L is the distance between two wells
within each site. The presence of the factor sin®(k - L) supresses the effect of the reservoir modes
at small k. This is clearly understandable: environment modes whose wavelength is longer than
L cannot ‘resolve’ the spatially separated wells within each site. The consequences of this fact
will be clear shortly. Replacing the sum over discrete modes to a continuum with the usual
rule V='Y", — (27)7? [dk, choosing x as azimuthal axis and using well-known relations for
Bogoliubov modes [32], we finally obtain

00 2 E .
Fc(t) = M/ dk kZe—k20'2/2 Sin 2—;:1‘ 1— sin 2k L (29)
' 72 Jo Ex (ex +2gpno) 2kL )

The superscript ¢ is to remind us that we are dealing with impurities interacting with a
condensate. For the special case of a bath of non-interacting bosons I'j*(¢) is obtained from
(29) simply imposing gg =0 and Ey = €. Let us point out that the spectral density, which
reads

J(@) = |Qri — Quil*8(ho — Ey), (30)
k

has a nontrivial form, which at small frequencies, scales as @™? for the interacting case, where
d is the dimensionality of the condensate, and as w%? for the non-interacting case. It is worth
noticing that while the former case is always superohmic, the latter is subohmic, ohmic and
superohmic depending on the dimensionality of the environment. Note that the high power in
J (w) is due to the fact that the bath has to ‘resolve’ the structure of the impurity, formally again
the factor sin’(k - L). Furthermore, as already pointed out, no ad hoc cutoff frequency w,. needs
to be inserted but appears naturally in the decaying exponential of variance o in (29).

Figure 2 shows clearly that the impurity maintains much of its coherence at long times.
Such survival is due to the above-mentioned suppressed effect of soft modes, which are
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responsible for the long time behaviour of I'y(¢), and is more pronounced when the environment
consists of a condensate than in the case of a reservoir consisting of free bosons. This can be
intuitively described in terms of greater ‘stiffness’ of the condensate whose Bogoliubov modes
are less displaced by the coupled impurity. The condensate is even able to give some coherence
back to the impurity, since I';(¢) is not monotonic in time. Oscillations of coherence in spin-
boson systems were predicted in [24] (and even earlier, in a different context, in [33]).

We can distinguish three stages in the dynamics of the I'y. In the first stage [y(z) o< £2, as
can be easily seen from a series expansion of (29). This very short stage, shown in the inset
of figure 2, corresponds to coherent dynamics. The second stage corresponds to a Markovian
behaviour, i.e. ['g(¢) o< ¢, and lasts a few tens of microseconds. Finally, in the third stage
[o(¢) saturates to a stationary value. This behaviour calls for particular caution in treating
an environment of (free or interacting) bosons as a Markovian reservoir for atomic impurities
immersed in it, which is clearly not the case in the present situation.

4.2. Collective decoherence of two impurities

Decoherence of quantum systems in a common environment is characterized by collective
decoherence. It is well known that two spins interacting with the same bosonic reservoir
with a spin-boson interaction Hamiltonian like the one discussed in this paper show sub- and
superdecoherence [23]. Put simply, the decoherence rate of the two spins is not simply 2I"(¢)
but, according to the initial state of the spins, much smaller or larger. In this final section of the
present paper, we analyse the specific features of collective decoherence in our system.

For two pseudospins, three decoherence parameters appear in the density matrix elements
independently of the exact form of the impurities’ state. One is ['((¢) and appears in
elements such as pg 0.0.1(¢), po.1:1.1(¢), etc which corresponds to individual dephasing of each
impurity atom; two more parameters I'; () and I',(¢) appear in elements such as |00 0.1,1(¢)| =
exp [—T"1(®)]]p0,0;1.1(0)| and | o 1;1,0(7)| = exp [—T'2(#)]] po,1:1,0(0)|, and corresponds to decay of
the coherences between states with the particles in the same or in the opposite side, respectively,
of the double well. For two pseudospins at distance 2D = 4L, these two parameters are

— 2 (1 o8 t) P Ex 1 1 2 2 \|?
() =Top0,n0) =h Z ———5—coth 5 |(RRk — Qi+ Qs — 2L )|

X Ey
2 2 sinz%t ) 2
—32gABnoZ<|uk| [uil)? e/ — 2= sin® (k- 1) cos’ (k- D), (31)
k

(l—cos%t> BE\
Fz(t)EF{l,O},{o,l}(f)ZhZZTCOth 5 (R — ke — L+ 2L )‘
k
2

, 5. sin =
_32gABnOZ(|uk| o) e A —2 = sin® (k - L) sin’(k - D). (32)

k
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Figure 3. I'|(¢) (dashed line), I';(¢) (dotted line), and 2I"y(¢) (solid line) versus
time for a pair of impurity atoms at a distance 2D = 4L (see text), immersed
in a condensate (left) and in an environment of free bosons (right) in three
dimensions.

Calculations similar to those performed for I'y give for a condensate environment

2 FE
T§(r) = 283w"0 / “ak keton
: w2 Jo Ey (ex +2ggny)

) 2sin 2kL +2sin 2kD  sin2k(L+ D) sin2k(D — L)
X f— pa— J—
2k L 2kD 2k(L+ D) 2k(D — L)

=20 (1) — 8°(¢), (33)

202 n o0 sin? Lk¢
r5(r) = “Sas™0 f dk k2e K2 2
T 0 Ex (ex +2ggny)

sin 2k L sin2kD sin2k(L+ D) sin2k(D — L)
x[2—-2 -2 + +
2kL 2kD 2k(L + D) 2k(D — L)

=200 (1) +5°(2). (34)

In the above equations, it is easy to identify the term §°(¢#) which quantifies the deviation to
the dechoherence exponent 2I' typical of the decoherence of two impurities interacting with
independent environments. Note that while Iy depends only on L, i.e. on the spatial size of
the double well, § depends nontrivially on L == D, i.e. on the distance between the impurities of
different wells. As before the special case of a bath of non-interacting bosons Fj“' (1), Fg'i (1)
are obtained from the above equations (33) simply imposing gg = 0 and Ey = €.

As in the case of single impurity decoherence the impurities do not loose all their
coherence: I'} and I', saturate to a stationary value that can be varied with the help of
Feshbach resonances. Furthermore figure 3 shows that in a system of two impurities coherence
oscillations appear, both for interacting and non-interacting bosons in the environment (even
more pronounced oscillation are shown in figure 5). Such coherence revival is due to the
collective nature of the coupling, as quantified by 8°(¢) (8"*(¢) for free bosons). As shown

New Journal of Physics 11 (2009) 103055 (http://www.njp.org/)



12 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0.030

1073

0.025 ;

0.020 |

0.015 ;

o)

0.010 ;

0.005 |

0.000 t

Figure 4. 5°(¢) (dashed line) and 8" (¢) (solid line) versus time for a pair of
impurity atoms in a 3D environment. The inset shows §(¢) for very short times
0<r<2us.

in figure 4 also the §(¢) are characterized by three different timescales comparable to those
analysed for I'g(¢). In the first stage, the difference |§(¢)| is negligible, since the presence of
each impurity cannot have modified yet the environment seen by the other one; in the second
stage, corresponding to the Markovian dynamics, the difference |5(¢)| steadily grows up; and in
the third stage it decreases, reaching a stationary value.

For a pair of impurities we observe super- and sub-decoherences; however, with a
peculiarity which is characteristic of the system here considered. Indeed we observe sub-
decoherence in I'y =T ,1,1; and super-decoherence with I'y = I'(1 ¢y (0,1}, at variance with
what one observes in a standard spin-boson model, where their role would be exchanged [23].
This different behaviour is due to the particular configuration of our system: I'; gets contribution
from superpositions of the states |0, 0) and |1, 1), where the atoms sit in wells with identical
distance, whereas the states |0, 1) and |1, 0), contributing to I',, correspond to atoms sitting in
wells with different separations.

Further insight on the features of the collective decoherence is gained by considering the
decoherence of impurities sitting in sites which are at a larger distance than 2D = 4L = 600 nm.
In figure 5, we plot the decoherence exponents for impurities trapped in lattice sites at distances
2D = 8L, 16L and 40L, respectively. These plots suggest the following picture: initially the
impurities decohere independently, as if they were each immersed in its own environment; at
some later time, the environment correlations due to the impurities act back on them and give
rise to oscillating deviations from 2I'y(¢). The onset time of these oscillations depends on the
separation: the larger the separation, the later the onset. On the other hand, the correlations
become weaker as the distance increases and the oscillations become consequently smaller in
amplitude. At large separation (here, approximately 40L), the parameters I'; and I'; are hardly
discernible from 2I'), since the environment correlations induced by the impurities vanish.
Similar features in a related context are reported in [34]. In summary, I';(¢) and I',(z) also
prompt information about the correlation length of the environment.
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Figure 5. " (¢) (top) and I';(¢) (bottom) versus time for a pair of impurity atoms
interacting with a bosonic condensate (left) and with free bosons (right) in three
dimensions for different distances between the impurities: 2D = 8L (dash-dotted
line), 2D = 16L (solid line), and 2D = 40L (dashed line); 2I"¢(¢) (dotted line)
is also shown for comparison.

4.3. Decoherence in one dimension

Finally, we examine the decoherence process in a 1D condensate. Since, as previously discussed,
the spectral density (30) is superohmic for an interacting gas, but subohmic for a free Bose gas,
we expect qualitative different results for the two cases, in contrast to the 3D case. The decay
exponents in one dimension y (¢) become

402 oo sin? Lk¢
ye(r) = ~2ABT0 f dk | e 2 sin*kL (35)
T | Ex (ex +2an0)_
for one impurity and
402 o [ sin? Ly
ye(r) = ~SABT0 / dk | e ¥ 2 sin*(kL) cos>(k D)
T Je | Ex (ex +2ggno) |
=2y0(1) — 5°(1), (36)
492 o0 ) s sin® £y
yS(t) = —SABT0 / dk | e ¥ 2 sin* (kL) sin* (kD)
T oo Ex (ex +2ggny)
= 2y0(t) +8°(¢) (37)

for two impurities in a condensate. The behaviour of these parameters critically depends on the
nature of the environment, see figure 6. In particular, decoherence in a 1D sample of free bosons
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Figure 6. y;(¢) (dashed line), y»(¢) (dotted line), and 2y, (¢) (solid line) versus
time for a pair of impurity atoms immersed in a condensate (left) and in an
environment of free bosons (right) in one dimension. The separation between
two impurity atoms is 2D =4L.

becomes Markovian, in agreement with the naive expectation, due to its subohmic spectral
density.

5. Conclusions

We have shown how a system of impurity atoms trapped in an array of double wells, interacting
with a cold atomic gas, is described, in a suitable regime, by a spin-boson Hamiltonian.
The specific nature of our system, in which the pseudospins associated with the presence of
an impurity in the right/left well of each site have a spatial dimension, introduces peculiar
features in the decoherence of a single impurity as well as in the collective decoherence,
with the persistence of coherence at long times, the presence of coherence oscillations and
counterintuitive super/subdecoherent states.

We have shown in particular that for a three-dimensional bath one never has a Markovian
behaviour. A 1D bath is in this respect more interesting since one can go from a non-Markovian
to a Markovian behaviour just by tuning the interaction of the bath.

As a final comment we would like to say a few words about the role of the quadratic
terms in the Bogoliubov operators which we have neglected in our derivation of Hamiltonian
(14). Although a detailed study of their effects is beyond the scope of the present paper, we
would like to point out that their effects are negligible with respect to the linear terms we
have analysed here. One can show that their inclusion amounts to taking into account elastic
scattering of Bogoliubov particles, which is simply responsible of an energy shift, inelastic
scattering processes and Bogoliubov pair creation and annihilation. In these two latter additional
terms the length of wave vectors k that can play some role in the impurities’ dynamics is limited
from below by the finite size of the condensate and from above by cutoff parameter o ~'. It can
be shown that, in this frequency range, the coupling constants of the neglected processes are,
for the values of parameters assumed in our analysis, three orders of magnitude smaller than
the coupling constants hQZ’k of the linear terms. As a consequence, a rough estimate leads us
to suppose that any possible relevant effect of the quadratic terms in the Hamiltonian would
become apparent at timescales that are three orders of magnitude larger than those examined in
this paper.
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Appendix A. Disentangling the time-evolution operator

The factorization of the time-evolution operator Ut) = exp[—iﬁ t/h] is often an impossible
task. When the Hamiltonian contains operators forming a Lie algebra the transformation of
U() into a product of simpler exponential operators is however possible in some cases [35].
Here, we show a practical way to transform U (1), which we write as

U(t) = exp [ - % > Ekalﬁakz] exp [Z (Z AL ()6 + ak(z)>6§]
k k i
X exp [ -3 (Z Bi()6! + ﬁk(t)>8k] Ur(t), (A.1)
k i

where U r(?) is to be determined, as well as the quantities A{((t), B{( (1), ax(t) and Bx(t). Since at
t = 0 the time-evolution operator U reduces to the identity operator, A{((O) = B{;(()) = B(0) =
ak(0) = 0. All unknown quantities can be found with the help of the relation

A

A=in [dU(t) /dr] 0-'(), (A2)
which holds for any time-independent Hamiltonian and of the relation
X Ve X = V4R, P14+ 1%, (X, P+ L% (R, (X, PO+ - (A3)

for arbitrary operators X and Y. After inserting the expression (A.1) for the time-evolution
operator U (¢) in the right-hand side of (A.2), a comparison with the Hamiltonian (18) leads to
the expressions

. h(QF, — Qi . , A
Ai((t) — ( R;Ek L,k) (1 . elEkI/h) , Bll((t) — Aij(t), (A4)
f ) Qi* Qi* '
O{k(l') — Zl ( Rk + L,k) (1 _ elEkl/h) , ,Bk(t) — O{;:(t) (AS)

2FEy
for A(t), B(t), a(t) and B(t), and to the differential equation

d ~ L C ~
L Ur() =~ Xk: (Z Bi()6! + ,Bk(t)) (2,: AL(1)6! +ak(t)> Ur(t)  (A6)
for the unknown exponential operator Ug(t), which we write as

Ur(r) = exp [ -> (Z (6167 + ) " i (16! + ek(t)>]. (A7)
k ij i
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A comparison with (A.6) gives

1 (1) = BL(OAL®), &(t) = Pr(@)on(t), [ (t) = Bi(t)aw(t) + By (1) Al (1) (A.8)
that is
y (Qiz kK QZL K) (Q{z*k - ka) ih
V() = —ih ' ' ’ ' (] = eiExi/h A
n (1) i I |:t + z (1—e )] , (A.9)
> (e + 2L p) <Qljz*k + ka) ih
) = —ih ' ’ ’ L+ — (1 —eiBW/R A.10
ex(t) = —i IE. [+Ek( e )] (A.10)
i in i i J* J* ih —iExt/h
) = =5 0 (R~ 2) 3 (QR’k + QL’k) g (1= M) | (A.11)

J

Moreover, using Glauber’s relation
A %A ~ * A 1
CXp [Z gkclt:| exp |:_ Z gkcki| = &xp [Z (gkclt - gkck> ] cXp |:E Z |gk|2i| (A.12)
k k k k
the two exponentials linear in Bogoliubov operators can be merged into

exp [Z (Z A (1)6! +ak(t))e;] exp [ -3 (Z Bj(1)é6! +,3k(t)>8k]
k i i

k

= exp { [ > ( > AL1)6! +ak(r)>e§ -3 ( > AR 06! +oe;g(t))ak] }
k i k i
1 i (A ko NAT Lk
X exp {5 { Zk: ( Z AL ()67 + ak(t)) (2}: ALY ()67 +ak(t)>] } (A.13)

and the contribution of the last exponential can be included in Ug(¢). Performing some
commutations where it is possible, the time-evolution operator becomes

5 i AT A i NAiA i (VA
U(t) =exp |: — % Z Ekckckt] exp |: — Z (Z . (1)6.6] + Z i (t)o, +ek(t)>
k k ij i

X exp [Z (Z AL ()] +ak(r)>ai; -> (Z Bi(1)&! + ,Bk(t)>8k
k i k i -
1 i AL j sk A7 *
X exp {5 { Zk: (Z AL ()67 + ozk(t)) (2}: ALY ()67 +ak(r)>] } (A.14)

Finally, the exponential operators that do not contain bath operators commute, so the time-
evolution operator can be further modified into the final form (19).
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Appendix B. Derivation of the dynamics of the impurities

The action of U k.p(?) on a pure state of the whole system is

Uo ) {n,)) ({m )} ® o UL o (0) = [{n,}) ({m )| ®

X exp |:( Z Aj (t)( 1)" +ak(t)>ck (— Z A{;*(z)(_l)"./ +a§(;))@k:|pk

J

X exp [— (— PIPHGICIVE +ak(t))a§ + (— > AT O=Dm +a;;(t)>ék]
J J
(B.1)

and the density matrix elements py, ) om,)(¢) of the impurities are obtained by tracing over the
bath,

Ping).mp) (1) = €XP (1O m,1 (1) } €XP {iBpn, ). pm,1 (1) } Oty (m,1 (0)
(@) TT Trw { Dun 1) (0m,)1 @ 0, T o0} 11m,), (B.2)
k

where Trp i denotes the trace over each Bogoliubov mode of the environment and the phases

(@)

Oy tmpy (1) =1 Y T D R (o — Q) (Q{;fk—sz{D [(—1y"#mi — (=1y™*mi], (B.3)
k k

! j % i i
By hmpy () =1 Y h kE(Z) "y (Q{{k + Qi’k) > 0 (Qk— Q) (1 —my) (B.4)
k k j i

come from the unitary operators in (19). Perfornnng cychc permutation inside the trace and
usmg the identity exp(M ) exp(N ) = exp(M +N ) expl (M, N] /2, which holds for operators M
and N that commute with their commutator, the trace Trg k in (25) becomes

exp [N(Z AL (=1 - akm) (Z AP () (=1ym — a.’:m)}
J
xTrB,k{ exp |:2 Z (n; —m;) (A{((t)éli — Ai(*(t)ék> :|,0k}

i

=exp {iA{np},{mp}(t)} TrB,k{ exp |:2 Z (n; —m;) (A;((t)élt — Ai(*(t)ak) ]pk}

(B.5)
The trace over the thermal bath of the displacement operators is well-known [23],
At xa |gxl® BE
Tr [exp { axcy — i) x| = exp {— - coth R (B.6)

where B = (kgT)~!, and leads to equation (25).
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Appendix C. The coupling constant in a deep optical lattice

In a deep optical lattice, the ground state wavefunctions of each well can be approximated with
those of harmonic oscillators,

1 (x —xin)? _ (y = yin)’ _ (z _Zi’N)2:| _ (C.1)

N(X) = —————zexp [—
[m3x2yez2]" 2x5 255 223

Here N =L, R, and xo = /A /(mw,), yo = /h/(mw,), and zo = 4/h /(mw,), where the »’s are
the trapping frequencies of the harmonic trap approximating the lattice potential at bottom of
L and R wells of the lattice site i. The coupling frequencies (17) of the spin-boson model then
become

gAB\/_

Q= " (lux| — Ivkl)/d3x @i ()%™

gAB«/

(| k| |vk|) e—k252/4eikx)€[,n , n= L, R (C2)
having assumed identical confinement in the three directions, o = xy = yy = 2o.
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Demons, Engines
and the Second Law

Since 1871 physicists have been trying to resolve the conundrum
of Maxwell’s demon: a creature that seems to violate the second law
of thermodynamics. An answer comes from the theory of computing

ne manifestation of the sec-

ond law of thermodynamics is

that such devices as refrigera-
tors, which create inequalities of tem-
perature, require energy in order to
operate. Conversely, an existing in-
equality of temperature can be ex-
ploited to do useful work—for exam-
ple by a steam engine, which exploits
the temperature difference between
its hot boiler and its cold condenser.
Yet in 1871 the Scottish physicist
James Clerk Maxwell suggested, in
his Theory of Heat, that a creature
small enough to see and handle indi-
vidual molecules might be exempt
from this law. It might be able to cre-
ate and sustain differences in temper-
ature without doing any work:

“...if we conceive a being whose
faculties are so sharpened that he
can follow every molecule in its
course, such a being, whose attri-
butes are still as essentially finite as
our own, would be able to do what s
at present impossible to us. For we
have seen that the molecules in a
vessel full of air at uniform tempera-
ture are moving with velocities by no
means uniform.... Now let us sup-
pose that such a vessel is divided
into two portions, A and B, by a divi-
sion in which there is a small hole,
and that a being, who can see the in-
dividual molecules, opens and closes
this hole, so as to allow only the
swifter molecules to pass from A to B,
and only the slower ones to pass
from B to A. He will thus, without
expenditure of work, raise the tem-
perature of B and lower that of A, in
contradiction to the second law of
thermodynamics.”

The “being” soon came to be called
Maxwell’s demon, because of its far-
reaching subversive effects on the
natural order of things. Chief among
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these effects would be to abolish the
need for energy sources such as oil,
uranium and sunlight. Machines of
all kinds could be operated without
batteries, fuel tanks or power cords.
For example, the demon would en-
able one to run a steam engine con-
tinuously without fuel, by keeping
the engine’s boiler perpetually hot
and its condenser perpetually cold.

To protect the second law, physi-
cists have proposed various reasons
the demon cannot function as Max-
well described. Surprisingly, nearly
all these proposals have been flawed.
Often flaws arose because workers
had been misled by advances in oth-
er fields of physics; many of them
thought (incorrectly, as it turns out)
that various limitations imposed by
quantum theory invalidated Max-
well’sdemon.

The correct answer—the real rea-
son Maxwell’s demon cannot violate
the second law—has been uncovered
only recently. It is the unexpected
result of a very different line of
research: research on the energy re-
quirements of computers.

S ince Maxwell’s day numerous ver-
sions of the demon have been pro-
posed. One of the simplest creates
a pressure difference (rather than a
temperature difference) by allowing
all molecules, fast or slow, to pass
from B to A but preventing them from
passing from A to B. Eventually most
of the molecules will be concentrated
in A and a partial vacuum will be cre-
ated in B. This demon is if anything
more plausible than Maxwell’s origi-
nal demon, since it would not need
to be able to see or think. It is not im-
mediately evident why such a de-
mon—a one-way valve for mole-
cules—could not be realized as some
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simple inanimate device, for instance
aminiature spring-loaded trapdoor.

Like Maxwell’s original demon, the
“pressure demon” could be a source
of limitless power for machines. For
example, pneumatic drills of the kind
used to cut holes in streets generally
run on compressed air from a tank
kept full by a gasoline-powered com-
pressor. A one-way valve for air mol-
ecules could substitute for the com-
pressor, effortlessly collecting air
from the surroundings into the high-
pressure tank.

One might think such an arrange-
ment would violate the law of conser-
vation of energy (otherwise known
as the first law of thermodynamics),
but it would not. The energy for cut-
ting concrete could be taken from
heat in the air collected by the one-
way valve; the air’s temperature
would drop as it passed through the
machinery. There is nothing in the
first law to prevent an engine from
supplying all its energy needs from
the ambient heat of its environment,
or even from the waste heat of its
own friction and exhaust. It is the sec-
ond law that prohibits such engines.

To analyze the demon’s actions
closely, then, one must understand
some of the subtleties of the second
law. The second law was original-
ly expressed as a restriction on the
possible transformations of heat and
work, butitis now seen as being fun-
damentally a statement about the in-
crease of disorder in the universe.
According to the second law, the en-
tropy, or disorder, of the universe as
a whole cannot be made to decrease.
This means that only two kinds of
events are possible: events during
which the entropy of the universe
increases and events during which
it remains constant. The former are



UNIFORM GLOW in a hot furnace (top) demonstrates one conse-
quence of the second law of thermodynamics: it is impossible to
distinguish objects in a vessel at uniform temperature without
an external light source hotter than the vessel’s ambient temper-
ature. In a vessel at uniform temperature objects glow in such a
way that exactly the same intensity and color of light come from
the surface of every object (even objects that have different re-
flectances and colors). The reason is that if any object appeared

© 1987 SCIENTIFIC AMERICAN, INC

darker than its surroundings, it would absorb energy at the ex-
pense of its neighbors. As a result it would become hotter and its
neighbors would become cooler. According to the second law,
however, objects that are initially at the same temperature can-
not spontaneously come to have different temperatures. (In this
photograph some contrast is visible because the temperature in-
side the furnace is not exactly uniform.) By an external light
source, intrinsic differences in reflectance are visible (bottom).
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MAXWELL’S DEMON, described in 1871 by James Clerk Maxwell, seems able to violate
the second law of thermodynamics. The demon controls a sliding door that blocks a
hole in a wall between rooms containing gas at equal temperatures and pressures. It ob-
serves molecules approaching the hole and opens and closes the door to allow fast-
moving molecules to pass from room A to room B but not vice versa. Slow-moving mole-
cules, conversely, are allowed to pass only from B to A. As the demon sorts, B heats up
and A cools. According to the second law, a certain amount of work is required to create
a temperature difference, but the work of sliding a door can be made negligibly small.

known as irreversible processes be-
cause to undo them would violate the
second law; the latter are called re-
versible processes. One can decrease
the entropy of a given system by do-
ing work on it, but in doing the work
one would increase the entropy of
another system (or that of the first
system’s environment) by an equal
or greater amount.

A classic irreversible process, and
one that helps in defining the con-
cept of entropy a little more precise-
ly, is called free expansion. Suppose
a chamber filled with gas is separated
by a partition from a vacuum cham-
ber of the same size. If a small hole is
made in the partition, gas will escape
(that is, it will expand freely) into the
formerly empty chamber until both
chambers are filled equally.

The reason the molecules spread
out to fill both chambers is mathe-
matical rather than physical, if such a
distinction can be made. The num-
bers of molecules on the two sides of
the partition tend to equalize not be-
cause the moleculesrepel one anoth-
er and move as far apart as possible,
but rather because their many colli-
sions with the walls of the container
and with one another tend to distrib-
ute them randomly throughout the
available space, until about half of
them are on one side of the partition
and about half are on the other side.

Since the spreading of the mole-
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cules is due to chance rather than
to repulsion, there is a chance that
all the molecules might return si-
multaneously to the chamber from
which they came. If there are n mol-
ecules, however, the probability of
all of them returning to their original
chamber is the same as the probabili-
ty of tossing n coins and having them
all come up “heads’: 1/2". Thus for
any sizable number of molecules
(and there are about 300,000,000,-
000,000,000,000,000 molecules in a
gram of hydrogen) the free expan-
sion is an effectively irreversible
process: a process whose spontane-
ous undoing, although possible, is so
unlikely that one can say with confi-
dence it will never be observed.

he disordered state—the state in

which the gas has spread into
both chambers rather than resid-
ing compactly in a single chamber—
is more probable than the ordered
state. That is, there are more config-
urations of molecules in which the
molecules occupy both chambers,
just as, when 100 coins are tossed,
there are more ways to achieve a to-
tal of 50 heads and 50 tails than there
are to achieve 100 heads and no tails.
In saying that the entropy of the uni-
verse tends to increase, the second
law is simply noting that the uni-
verse tends to fall into more probable
states as time passes.
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Can this concept be quantified? In
other words, can one say how much
the disorder of the gas has increased
after it has spread out to fill both
chambers? Consider a single mole-
cule in the gas. A molecule that can
roam throughout both chambers has
twice as many possible positions as a
molecule confined to a single cham-
ber: there are twice as many ways for
a molecule to occupy the two-cham-
ber apparatus. If there are two mole-
cules in the two-chamber apparatus,
each molecule has twice as many
possible positions as it would have in
a single chamber, and so the system
as a whole has 2 x 2, or four, times
as many possible configurations. If
there are three molecules, the sys-
tem has 2 X 2 X 2, or eight, times as
many possible configurations.

In general, if there are n molecules
in the gas, the gas can fill two cham-
bers in 2" times more ways than it
can fill a single chamber. The gas in
the two-chamber apparatus is said to
have 2" times as many ‘“accessible
states” as the gas in a single cham-
ber. In the same way, the number of
accessible states in most systems de-
pends exponentially on the number
of molecules.

The entropy of a system is there-
fore defined as the logarithm of the
number of accessible states. In the
example of the two-chamber gas ap-
paratus, a 2"-fold increase in the num-
ber of accessible states is an increase
in entropy of n bits, or binary units.
(The base of the logarithm—and
hence the size of a unit of entropy—is
arbitrary; itis conventional to choose
base 2 and binary units.) The loga-
rithmic scale has the advantage of
making the entropy of a sample
of matter, like its energy or mass,
roughly proportional to the number
of molecules in the sample. One can
draw an analogy to a computer mem-
ory: an n-bit memory, other things
being equal, has size, weight and cost
that are roughly proportional to n, al-
though the number of distinct states
possible in the memory is 2".

he earliest statements of the sec-
ond law did not mention random-
ness or disorder; they concerned
heat, work and temperature. How
can these concepts be related to our
quantitative definition of entropy?
The molecules in any sample of
matter are always in motion. The
speed and direction of each molecule
are random, but the average speed of
the molecules is proportional to the
square root of the sample’s temper-
ature (as measured from absolute



zero). As the temperature of a sample
is raised (and the average speed in-
creases) the velocities of individual
molecules come to be distributed
over a greater range than they are
when the average speed is low.

When the average speed is high,
then, every molecule in the sam-
ple has a greater range of velocities
available to it, just as a molecule in
a two-chamber gas apparatus has a
greater range of positions available
to it than amolecule in a single-cham-
ber apparatus has. There are thus
more accessible states at high tem-
peratures than there are at low tem-
peratures. The motion is more disor-
dered at high temperatures, because
itis harder to predict what the veloci-
ty of any molecule will be.

Disorder of molecular motion and
disorder of molecular positions must
both be counted in determining the
entropy of a system. The entropy of a
gas can be increased either by allow-
ing the gas to occupy a greater vol-
ume or by increasing its temperature
so that its molecular motion becomes
more disorderly.

Any flow of heat therefore carries
entropy with it. To be precise, it turns
out that a heat flow carries an
amount of entropy proportional to
the quantity of heat flowing divided
by the temperature at which the flow
takes place. Hence a flow from a hot
body to a cold body raises the entro-
py of the cold body more than it low-
ers the entropy of the hot one: the
same amount of heat leaves the hot
body as enters the cold body, but in
figuring the entropy decrease of the
hot body one divides by a high tem-
perature, whereas in figuring the en-
tropy increase of the cold body one
divides by a low temperature. A heat
flow from a hot to a cold body thus
raises the entropy of the universe.

Our more precise definition of en-
tropy gives us a better under-
standing of why Maxwell’s demon
seems to violate the second law. By
its sorting action the demon is caus-
ing heat to flow from room A to room
B, even after room B has become
warmer than room A. The demon is
therefore lowering the entropy of
room A by a greateramount than it is
raising the entropy of room B. The de-
mon therefore decreases the entropy
of the universe as a whole—a thermo-
dynamic impossibility.

In his description of the demon
Maxwell made it clear he believed in
the wvalidity of the second law. He
suggested that perhaps human be-
ings are unable to violate the second

law (by doing what the demon can
do) simply because they lack the de-
mon’s ability to see and handle indi-
vidual molecules. This is not a com-
pletely satisfying exorcism of the
demon, because it leaves open the
question of whether a being able to
see and handle individual molecules,
if such a being did exist, could violate
the second law.

One way to uncover the reasons
Maxwell’s demon cannot work is to
analyze and refute various simple,
inanimate devices that might func-
tion as demons, such as the mini-
ature spring-loaded trapdoor men-
tioned above, which acts as a one-
way valve for molecules.

Imagine that the door opens to the
left. If the demon works as it is sup-
posed to, then every time a molecule
from the room on the right strikes the
door, the door swings open and the
molecule passes into the room on
the left. When a molecule from the
left strikes the door, however, the
door slams shut, trapping the mole-
cule. Eventually all the molecules are
trapped on the left, and the demon
has compressed the gas (reducing its
entropy) without doing any work.

How is the trapdoor demon flawed?
First of all, the spring holding the
door shut must be rather weak. The
work of opening the door against the
spring’s force must be comparable

to the average kinetic energy of the
gas molecules. In 1912 Marian Smolu-
chowski pointed out that because the
door is repeatedly being struck by
molecules, it will eventually acquire
its own kinetic energy of random mo-
tion (that is, heat energy). The door’s
energy of random motion will be
about the same as that of the mole-
cules striking it, and so the door will
jiggle on its hinges and swing open
and shut (remember that the door
is very small), alternately bouncing
against its jamb and swinging open
against the force of the spring.

When the door is open, it obviously
cannot function as a one-way valve,
since molecules can pass freely in
both directions. One might still hope
that the door would act as an ineffi-
cient demon, trapping at least a small
excess of gas on the left, but it cannot
do even that. Any tendency the door
has to act as a one-way valve, open-
ing to let amolecule go from the right
to the left, is exactly counteracted
by its tendency to do the reverse: to
slam shut against a molecule that has
wandered in front of it, actively push-
ing the molecule from the room on
the left to the one on the right (aided
by the force of the spring).

The two processes—a molecule
pushing its way past the door from
right to left, and the door pushing a
molecule from left to right—are me-

TRAPDOOR “DEMON" is a form of Maxwell’s demon designed to operate automatical-
ly and to create an inequality of pressure, not of temperature. A spring-loaded trapdoor
blocks a hole between two rooms initially containing gas at equal temperatures and
pressures. The door swings open in only one direction in order to admit molecules
from room B into room A but not vice versa. Eventually, one might think, molecules will
accumulate in A at the expense of B, creating an inequality of pressure. Actually the in-
equality does not build up. The trapdoor, heated by collisions with molecules, jiggles
open and closed randomly because of thermal energy. When it is open, it is not a one-
way valve, and as it closes it may push a molecule from A into B. The latter process takes
place as often as its inverse, in which a molecule from B pushes past the door into A.
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FREE EXPANSION of a gas is a thermodynamically irreversible
process: one in which the entropy, or disorder, of the universe
increases. A gas is initially confined in one chamber of a two-

chanical reverses of each other: a
motion picture of one, shown back-
ward, would look like the other. In an
environment at a constant temper-
ature and pressure both processes
would take place equally often, and
the ability of the trapdoor to act as
a one-way valve would be exactly
zero. It cannot work as a demon.

In environments where the pres-
sure is not equal on both sides of
the door, of course, such devices do
function. Large-scale versions, built
with macroscopic doors and springs,
can be seen on ventilator fans de-
signed to blow stale air out of restau-
rants without admitting gusts of out-
side air when the fan is off. Micro-
scopic versions would function in
much the same way, allowing mole-
cules to pass if there were excess
pressure on one side but shutting off
the flow if there were excess pres-
sure on the other. The devices would
not violate the second law, because
they could only allow pressures to
equalize; they could never form re-
gions of excess pressure.

ven though a simple mechanical
demon cannot work, perhaps an
intelligent one can. Indeed, some
time after Maxwell had described the
demon, many investigators came to
believe intelligence was the critical
property that enabled the demon to
operate. For example, in a 1914 paper
Smoluchowski wrote: “As far as we
know today, there is no automatic
permanently effective perpetual-mo-
tion machine, in spite of the molecu-
lar fluctuations, but such a device
might, perhaps, function regularly if
it were appropriately operated by in-
telligent beings.”
The physicist Leo Szilard attempt-
ed a quantitative analysis of this
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question in a paper published in
1929, “On the Decrease of Entropy in
a Thermodynamic System by the In-
tervention of Intelligent Beings.” Al-
though the title seems to imply an in-
telligent demon could violate the sec-
ond law, the body of the article is
devoted to refuting this notion and to
arguing that no being, intelligent or
not, can do so. Szilard thought the ob-
servation, or measurement, the de-
mon must make (for example, to see
which side a molecule is coming
from) cannot be done without also
doing enough work to cause an in-
crease in entropy sufficient to pre-
vent a violation of the second law.

Szilard considered a demon that
differed in several ways from Max-
well’s; his demon has since come
to be called Szilard’s engine. (The
engine I shall describe here differs
slightly from Szilard’s original one.)
The engine’s main component is a
cylinder in which there is a single
molecule in random thermal motion.
Each end of the cylinder is blocked
by a piston, and a thin, movable par-
tition can be inserted in the middle of
the cylinder to trap the molecule in
one half of the cylinder or the other
[see illustration on opposite page). The
engine is also equipped with devices
for finding which half of the appara-
tus the molecule is in and a memory
for recording that information.

The engine’s cycle consists of six
steps. In the first step the partition is
inserted, trapping the molecule on
one side or the other. Szilard argued
that the work necessary to insert the
partition can in principle be made
negligibly small.

In the next step the engine deter-
mines which half of the apparatus the
molecule has been trapped in. The
engine’s memory device has three
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chamber apparatus (a). The barrier between the chambers is
pierced, and molecules leak from one chamber into the other un-
til approximately the same number of molecules are in both (b).

possible states: a blank state to signi-
fy that no measurement has been
made, an L to signify that the mole-
cule has been observed in the left
half of the apparatus, and an R to sig-
nify that the molecule has been ob-
served in the right half. When the
measurement is made, the memory
switches from the blank state to one
of the other two.

The third step, which might be
called a compression stroke, de-
pends on the knowledge gained dur-
ing the preceding step. The piston on
the side that does not contain the
molecule is pushed in until it touches
the partition. Unlike the compression
stroke of an internal-combustion en-
gine, this compression stroke re-
quires no work, because the piston
is “compressing” empty space; the
molecule, which is trapped on the
other side of the partition, cannot re-
sist the piston’s movement.

Then, in the fourth step, the parti-
tion is removed, allowing the mole-
cule to collide with the piston that
has just been advanced. The mole-
cule’s collisions exert a pressure on
the face of the piston.

In the fifth step, which might be
called the power stroke, the pressure
of the molecule drives the piston
backward to its original position, do-
ing work on it. The energy the mole-
cule gives to the piston is replaced by
heat conducted through the cylinder
walls from the environment, and so
the molecule continues moving at
the same average speed. The effect of
the power stroke is therefore to con-
vert heat from the surroundings into
mechanical work done on the piston.

In the sixth step the engine erases
its memory, returning it to the blank
state. The engine now has exactly
the same configuration it had at the



beginning of the cycle, and the cycle
can be repeated.

verall, the six steps appear to

have converted heat from the
surroundings into work while return-
ing the gas and the engine to the
same state they were in at the start. If
no other change has occurred during
the cycle of operation, the entropy of
the universe as a whole has been
lowered. In principle the cycle can be
repeated as often as the experiment-
er wants, leading to an arbitrarily
large violation of the second law.

Szilard’s way out of this predica-
ment was to postulate that the act
of measurement, in which the mole-
cule’s position is determined, brings
about an increase in entropy suffi-
cient to compensate for the decrease
in entropy brought about during the
power stroke. Szilard was somewhat
vague about the nature and location
of the increase in entropy, but in the
years after he published his paper a
number of physicists, notably Leon
Brillouin (the author, in 1956, of the
widely read book Science and Infor-
mation Theory) and Denis Gabor (best
known as the inventor of hologra-
phy), tried to substantiate the postu-
lated irreversibility of measurement.
In particular they tried to determine
what the cost should be, in terms of
energy and entropy, of observing a
molecule by aiming light at it and ob-
serving the reflections.

In their work, Brillouin and Gabor
drew on a theory that had been de-
veloped since Maxwell’'s time: the
quantum theory of radiation. Accord-
ing to the classical wave theory of
light (to which Maxwell made funda-
mental contributions), the energy of
a light ray can be made arbitrarily
small. According to the quantum the-
ory, however, light consists of ener-
gy packets called photons. The ener-
gy of a photon depends on its wave-
length, or color, and it is impossible
to detect less than one photon of
light. Brillouin argued that for a mole-

cule to be observed it must scatter at
least one photon of a probe beam,
and that when the photon’s energy is
dissipated into heat, the dissipation
must produce an entropy increase at
least as great as the entropy decrease
Szilard’s engine could achieve as the
result of information gained about
the scattering molecule.

hy not simply use a probe beam

of photons that have very low
energies? The scheme will not work,
because of another, more complicat-
ed, consequence of the quantum the-
ory. According to the quantum the-
ory of radiation, any vessel whose
walls and interior are all at a single
constant temperature becomes filled
with a “gas” of photons: a bath of ra-
diation. The wavelengths of the pho-
tons depend on the temperature of
the vessel. Such a photon gas consti-
tutes the uniform red or orange glow
inside a hot furnace. (At room tem-
perature the photons are mostly in
the infrared part of the spectrum and
are therefore invisible.)

The photon gas might seem at first
to be a handy source of light by
which the demon could observe gas
molecules (thereby saving itself the
entropy cost of a flashlight). One of
the surprising consequences of the
second law, however (a consequence
discovered by Gustav Robert Kirch-
hoff in 1859), is that it is impossible to
see anything in a vessel at umiform
temperature by the light of the ves-
sel’s own glow. If one looks into a
kiln in which pots are being fired, for
example, one will see a uniform or-
ange glow almost devoid of contrast,
even though the pots in the kiln may
have very different colors, bright-
nesses and surface textures.

The objects in the hot kiln look as
if they are all the same color and
brightness, but they are not, as one
can verify by shining a bright light
on them from outside the kiln. The
reason the objects nearly disappear
by the light of the kiln must therefore

SZILARD ENGINE, modeled after a machine described in 1929 by Leo Szilard, seems to
convert heat from its surroundings into work, contrary to the second law. The engine
(1) is a cylinder that is blocked off at both ends by pistons; it is equipped with a movable
partition and devices for observing the cylinder’s contents and recording the results of
observations. The cylinder contains a single molecule. At the start of the engine’s cycle
(2) the partition is lowered, trapping the molecule in one half of the cylinder. The obser-
vational devices determine and record which half contains the molecule (3), and the
piston from the other half is pushed in until it touches the partition (4). Moving the pis-
ton requires no work, since it compresses empty space. Then the partition is with-
drawn (5) and the molecule strikes the piston, pushing it backward (6). (The one-mole-
cule gas “expands” against the piston.) Energy lost by the molecule as it works against
the piston is replaced by heat from the environment. When the piston has returned
to its original position (7), the memory is erased (8) and the cycle can begin again.
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LOCKING PIN—

MEASUREMENT APPARATUS, designed by the author to fit the
Szilard engine, determines which half of the cylinder the mole-
cule is trapped in without doing appreciable work. A slightly
modified Szilard engine sits near the top of the apparatus (1)
within a boat-shaped frame; a second pair of pistons has re-
placed part of the cylinder wall. Below the frame is a key, whose
position on a locking pin indicates the state of the machine’s
memory. At the start of the measurement the memory is in a
neutral state, and the partition has been lowered so that the mol-
ecule is trapped in one side of the apparatus. To begin the meas-
urement (2) the key is moved up so that it disengages from the
locking pin and engages a “keel” at the bottom of the frame.
Then the frame is pressed down (3). The piston in the half of the
cylinder containing no molecule is able to descend completely,
but the piston in the other half cannot, because of the pressure
of the molecule. As a result the frame tilts and the keel pushes
the key to one side. The key, in its new position, is moved down
to engage the locking pin (4), and the frame is allowed to move
back up (5), undoing any work that was done in compressing the
molecule when the frame was pressed down. The key’s position
indicates which half of the cylinder the molecule is in, but the
work required for the operation can be made negligible. To re-
verse the operation one would do the steps in reverse order.
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be that dark (that is, nonreflective)
objects glow proportionately more
brightly than light (reflective) ob-
jects, so that the total light intensi-
ty leaving any object (reflected and
emitted light combined) is the same.
To see why this strange leveling of
intensity must take place, suppose it
did not occur and think about the
consequences for the second law.
Suppose two objects, say a vase and
a pot, are placed close together in a
kiln at uniform temperature. If the in-
tensity of light leaving the vase to-
ward the pot were greater than that
leaving the pot toward the vase, en-
ergy would flow from the vase to the
pot. The pot would become warmer
and the vase would become cooler.
Thus, without the expenditure of
work, two regions that were once at
a uniform temperature would come
to different temperatures, just as if
a Maxwell’s demon had been sitting
between them, and the second law
would be violated. Therefore if the
second law is to be valid, objects in a
vessel at uniform temperature can-
not have different surface intensities.
In order to see the objects in a fur-
nace, then, one must shine light in
from an external source, such as a
flashlight that has a filament hotter
than the furnace’s temperature. In
daily life such light sources—the sun,
for example—make it possible for us
to see objects in vessels that are uni-
formly at room temperature.
Brillouin, Gabor and others, armed
with an understanding of the photon
gas, argued that Maxwell’s demon
cannot observe the molecules it sorts
without some kind of light source.
Therefore, they said, the demon can-
not violate the second law. Every
time it observes a molecule the de-
mon must dissipate the energy of at
least one photon; the energy of that
photon must be greater than a mini-
mum energy determined by the tem-
perature of the gas in which the de-
mon sits. Such arguments, although
they are not completely rigorous,
seemed to substantiate Szilard’s be-
lief that acquiring a given amount of
information entails producing a cor-
responding amount of entropy.

he next major progress toward

banishing the demon was a side
effect ofresearch by Rolf Landauer of
IBM on the thermodynamics of data
processing. Certain data-processing
operations, such as the copying of
data from one device into another,
are analogous to measurements, in
that one device acquires information
about the state of the other. Hence it
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was generally believed in the 1950’s
that data-processing operations were
intrinsically irreversible (in the ther-
modynamic sense of the word), just
as Szilard had argued that measure-
ment in general is irreversible. It was
thought that any kind of data opera-
tion required the generation and re-
moval of at least one bit’'s worth of
heat for every bit of data to be proc-
essed. (This is an extremely small
quantity of heat: roughly one ten-bil-
lionth of the heat actually generated
by existing electronic circuits.)

In about 1960 Landauer analyzed
the question more thoroughly. He
found that some data operations
are indeed thermodynamically cost-
ly but others, including, under cer-
tain conditions, copying data from
one device to another, are free of any
fundamental thermodynamic limit
[see “The Fundamental Physical Lim-
its of Computation,” by Charles H.
Bennett and Rolf Landauer; SCIENTIFIC
AMERICAN, July, 1985].

Landauer’s proof begins with the
premise that distinct logical states of
a computer must be represented by
distinct physical states of the com-
puter’s hardware. For example, ev-
ery possible state of the computer’s
memory must be represented by a
distinct physical configuration (that
is, a distinct set of currents, voltages,
fields and so forth).

Suppose a memory register of n
bits is cleared; in other words, sup-
pose the value in each location is set
at zero, regardless of the previous
value. Before the operation the regis-
ter as a whole could have beenin any
of 2" states. After the operation the
register can be in only one state. The
operation has therefore compressed
many logical states into one, much as
a piston might compress a gas.

By Landauer’s premise, in order to
compress a computer’s logical state
one must also compress its physical
state: one must lower the entropy of
its hardware. According to the sec-
ond law, this decrease in the entropy
of the computer’s hardware cannot
be accomplished without a compen-
sating increase in the entropy of the
computer’s environment. Hence one
cannot clear a memory register with-
out generating heat and adding to the
entropy of the environment. Clearing
amemory is a thermodynamically ir-
reversible operation.

Landauer identified several other
operations that are thermodynami-
cally irreversible. What all these
operations have in common is that
they discard information about the
computer’s past state. In Landauer’s
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phrase, such operations are “logical-
ly irreversible.”

The connection of these ideas to
the problem of the measurement, im-
plicit in Landauer’s work and in the
reversible models of computation de-
veloped during the 1970’s by Edward
Fredkin of M.IT., myself and oth-
ers, became explicit in 1982, when I
proposed that they provide the cor-
rectexplanation of Maxwell’s demon.
Consider the operating cycle of Szi-
lard’s engine. The last step, in which
the engine’s memory is reset to a
blank state, is logically irreversible,
because it compresses two states of
the machine’s memory (“The mole-
cule is on the left” and “The molecule
is on the right”) into one (“The mol-
ecule’s position has not yet been
measured”). Thus the engine cannot
reset its memory without adding at
least one bit of entropy to the envi-
ronment. This converts all the work
that had been gained in the power
stroke back into heat.

What about the measurement step?
Is it thermodynamically costly as
well? In that case the engine would
add to the entropy of the universe
twice: once in measuring the mole-
cule’s position and again in resetting
its memory after the power stroke.
Actually the measurement does not
have to be thermodynamically cost-
ly. There are ways to observe mole-
cules other than by bouncing light
off them. To prove this point I have
designed a reversible measuring de-
vice, which measures and records
the position of the molecule without
undergoing any thermodynamically
irreversible steps.

e have, then, found the reason
the demon cannot violate the
second law: in order to observe a
molecule, it must first forget the re-
sults of previous observations. For-
getting results, or discarding infor-
mation, is thermodynamically costly.
If the demon had a very large mem-
ory, of course, it could simply re-
member the results of all its measure-
ments. There would then be no logi-
cally irreversible step and the engine
would convert one bit’s worth of heat
into work in each cycle. The trouble
is that the cycle would not then be a
true cycle: every time around, the en-
gine’s memory, initially blank, would
acquire another random bit. The cor-
rect thermodynamic interpretation
of this situation would be to say the
engine increases the entropy of its
memory in order to decrease the en-
tropy of its environment.
Attributing the gain in entropy to
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the resetting step rather than to the
measurement step may seem to be a
mere bookkeeping formality, since
any complete cycle of Szilard’s en-
gine must include both steps, but
considerable confusion can be avoid-
ed if one draws a clear distinction be-
tween the acquisition of new infor-
mation and the destruction of old
information. The confusion may or
may not have existed in Szilard’s
mind. In most of his paper he refers
to measurement as the irreversible
step, butat one point he makes an ac-
counting of entropy changes during
the cycle and finds, without explicit-
ly commenting on it, that the in-
crease in entropy takes place during
the resetting of the memory.

If subsequent workers had pur-
sued this aspect of Szilard’s paper,
they would have come to our present
understanding of Maxwell’s demon.
Their failure to do so is an irony in
the history of science: the advance-
ment of one branch of physics (the
quantum theory of radiation) appar-
ently delayed progress in another
branch (thermodynamics). One as-
pect of quantum mechanics that re-
inforced the idea that a fundamental
thermodynamic price must be paid
for acquiring information is the un-
certainty principle, which holds that
certain sets of measurements cannot
be carried out with more than a cer-
tain degree of precision. Although
the uncertainty principle sounds sim-
ilar to Szilard’s hypothesis that meas-
urements have an irreducible entro-
py cost, in factitis fundamentally dif-
ferent. Szilard’s hypothesis concerns
the thermodynamic cost of measure-
ments, whereas the uncertainty prin-
ciple concerns the possibility of their
being made at all, whatever their
thermodynamic cost.

Another source of confusion is that
we do not generally think of informa-
tion as a liability. We pay to have
newspapers delivered, not taken
away. Intuitively, the demon’s rec-
ord of past actions seems to be a
valuable (or at worst a useless) com-
modity. But for the demon ‘“yester-
day’s newspaper” (the result of a pre-
vious measurement) takes up valu-
able space, and the cost of clearing
that space neutralizes the benefit the
demon derived from the newspaper
when it was fresh. Perhaps the in-
creasing awareness of environmen-
tal pollution and the information ex-
plosion brought on by computers
have made the idea that information
can have anegative value seem more
natural now than it would have
seemed earlier in this century.
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Abstract
This topical review article gives an overview of the interplay between quantum
information theory and thermodynamics of quantum systems. We focus on
several trending topics including the foundations of statistical mechanics,
resource theories, entanglement in thermodynamic settings, fluctuation theo-
rems and thermal machines. This is not a comprehensive review of the diverse
field of quantum thermodynamics; rather, it is a convenient entry point for the
thermo-curious information theorist. Furthermore this review should facilitate
the unification and understanding of different interdisciplinary approaches
emerging in research groups around the world.
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1. Introduction

If physical theories were people, thermodynamics would be the village witch. Over the course
of three centuries, she smiled quietly as other theories rose and withered, surviving major
revolutions in physics, like the advent of general relativity and quantum mechanics. The other
theories find her somewhat odd, somehow different in nature from the rest, yet everyone
comes to her for advice, and no-one dares to contradict her. Einstein, for instance, called her
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‘the only physical theory of universal content, which I am convinced, that within the fra-
mework of applicability of its basic concepts will never be overthrown.’

Her power and resilience lay mostly on her frank intentions: thermodynamics has never
claimed to be a means to understand the mysteries of the natural world, but rather a path
towards efficient exploitation of said world. She tells us how to make the most of some
resources, like a hot gas or a magnetized metal, to achieve specific goals, be them moving a
train or formatting a hard drive. Her universality comes from the fact that she does not try to
understand the microscopic details of particular systems. Instead, she only cares to identify
which operations are easy and hard to implement in those systems, and which resources are
freely available to an experimenter, in order to quantify the cost of state transformations.
Although it may stand out within physics, this operational approach can be found in branches
of computer science, economics and mathematics, and it plays a central role in quantum
information theory—which is arguably why quantum information, a toddler among physical
theories, is bringing so much to thermodynamics.

In the early twentieth century, information theory was constructed as the epitome of
detachment from physics [7]. Its basic premise was that we could think of information
independently of its physical support: a message in a bottle, a bit string and a sensitive phone
call could all be treated in the same way. This level of abstraction was not originally con-
ceived for its elegance; rather, it emerged as the natural way to address very earthly questions,
such as ‘can I reliably send a message through a noisy line?” and ‘how much space do I need
to store a picture?’. In trying to quantify the resources required by those tasks (for example,
the number of uses of the noisy channel, or of memory bits), it soon became clear that the
relevant quantities were variations of what is now generally known as entropy [8]. Entropy
measures quantify our uncertainty about events: they can tell us how likely we are to guess
the outcome of a coin toss, or the content of a message, given some side knowledge we might
have. As such, they depend only on probability distributions over those events, and not on
their actual content (when computing the odds, is does not matter whether they apply to a coin
toss or to a horse race). Information theory has been greatly successful in this approach, and is
used in fields from file compression to practical cryptography and channel coding [8].

But as it turned out, not all information was created equal. If we zoom in and try to
encode information in the tiniest support possible, say the spin of an electron, we face some of
the perplexing aspects of quantum physics: we can write in any real number, but it is only
possible to read one bit out, we cannot copy information, and we find correlations that cannot
be explained by local theories. In short, we could not simply apply the old information theory
to tasks involving quantum particles, and the scattered study of quirky quantum effects soon
evolved into the fully-fledged discipline of quantum information theory [9]. Today we see
quantum theory as a generalization of classical probability theory, with density matrices
replacing probability distributions, measurements taking the place of events, and quantum
entropy measures to characterize operational tasks [10].

While quantum information theory has helped us understand the nature of the quantum
world, its practical applications are not as well spread as for its classical counterpart. Tech-
nology is simply not there yet—not at the point where we may craft, transport and preserve all
the quantum states necessary in a large scale. These technical limitations, together with a
desire to pin down exactly what makes quantum special, gave rise to resource theories within
quantum information, for instance theories of entanglement [13]. There, the rough premise is
that entangled states are useful for many interesting tasks (like secret key sharing), but
distributing entanglement over two or more agents by transporting quantum particles over a
distance is hard, as there are always losses in the process [14]. Therefore, all entangled states
become a precious resource, and we study how to distill entanglement from them using only a
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set of allowed operations, which are deemed to be easier to implement—most notoriously,
local operations and classical communication (LOCC) [15].

Other resource theories started to emerge within quantum information—purity and
asymmetry have also been framed as resources under different sets of constraints—and this
way of thinking quickly spread among the quantum information community (see [16] for a
review). As many of its members have a background in physics and an appetite for
abstraction, it was a natural step for them to approach thermodynamics with such a framework
in mind. Their results strengthen thermodynamics, not only by extending her range of
applicability to small quantum systems, but also by revisiting her fundamental principles. The
resource theory approach to thermodynamics is reviewed in section 4.

Each resource theory explores the limitations imposed by one specific physical con-
straint, like locality or energy conservation. In a realistic setting we could be bound to several
of these constraints, a natural case that can be modelled by combining different resource
theories, thus restricting the set of allowed operations. In section 5 we review and discuss
attempts to combine thermodynamic and locality constraints. In particular, we look at the role
of entanglement resources in thermodynamic tasks, thermodynamic witnesses of non-clas-
sicality, and entanglement witnesses in phase transitions.

Information theory also shed light on fundamental issues in statistical mechanics—the
mathematical backbone of thermodynamics. Perhaps one of the earliest significant contributions
is the maximal entropy principle introduced by Jaynes [17, 18]. In these seminal works Jaynes
addresses the issue of justifying the methods of statistical mechanics from microscopic
mechanical laws (classical or quantum) using tools from information theory. In fact, deriving
statistical mechanics, and hence thermodynamics from quantum mechanics is almost as old as
quantum mechanics itself starting with the work of von Neumann [11, 19]. This is very much an
ongoing and active research area and in recent years has received significant attention from the
quantum information community. The most significant contributions are reviewed in section 3.

In the past twenty years, the field of non-equilibrium statistical mechanics has seen a
rapid development in the treatment of driven classical and quantum systems beyond the linear
response regime. This has culminated in the discovery of various fluctuation theorems which
relate equilibrium thermodynamic quantities to non-equilibrium ones, and led to a revision on
how we understand the thermodynamics of systems far from equilibrium [20-24]. Although
this approach is relatively recent from a statistical physics perspective, a cross-fertilization
with concepts ubiquitous in quantum information theory has already started, including phase
estimation techniques for extraction of work and heat statistics and feedback fluctuation
theorems for Maxwell’s demons. In section 6 we identify these existing relationships and
review areas where more overlap could be developed.

As ideas and concepts emerge and develop it is not surprising that quantum information
theorists have started to turn towards the pragmatic goal of describing the advantages and
disadvantages of machines which operate at and below the quantum threshold. Although
ideas relating quantum engines have been around for a long time [25-27]—questions per-
taining to the intrinsic quantumness in the functioning of such machines have been raised
using the tools of quantum information theory only relatively recently. We review progress
along these lines in section 7.

1.1. Scope and other reviews

This review focuses on landmark and recent articles in the field of quantum thermodynamics
with a special emphasis on contributions from quantum information theory. We place
emphasis on current trending topics, discuss different approaches and models and peek into
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the future directions of the field. As the review is ‘topical’, we focus on the interplay between
quantum information and thermodynamics. Readers from different communities will get
an overview of how concepts and techniques from their fields have been applied to
thermodynamics.

As the vastness of possible topics could easily exceed the scope of a topical review, we
refer to other review articles and books concerning questions that have already been covered
by other authors:

e Equilibration and thermalization. Recovering statistical mechanics from the unitary
evolution of a closed quantum system is an issue which is almost as old as quantum
mechanics itself. This topic, far from being an academic issue, has seen an unprecedented
revival of interest due mainly to advances in experimental ultra-cold atoms. We discus the
topic in section 3, from a quantum information perspective. This topic is more extensively
reviewed in [28]. For readers interested in this topic from a condensed matter perspective
we recommend the review [29] and the special issue [30] for more recent developments.

* Thermal machines. As mentioned in the introduction viewing engine cycles from a fully
quantum mechanical perspective is also not a new topic [25-27]. Many results on
quantum engines exist which are not directly related to quantum information processing
we exclude them from section 7 and the interested reader may learn more in [31-33].

* Maxwell’s demon and Landauer’s principle. Almost as old as thermodynamics itself is

the Maxwell’s demon paradox, briefly introduced in figure 1 and example 3. The demon

paradox inspired the seminal work of Szilard to reformulate the demon as a binary
decision problem [34]. The resolution of Maxwell demon paradox by Landauer cements
the relationship between the physical and information theoretical worlds. This demon has

been extensively investigated from both a quantum and classical perspective in [2-6].

Quantum thermodynamics. The 2009 book [35] covers a range of topics regarding the

emergence of thermodynamic behaviour in composite quantum systems.

Entanglement and phase transitions in condensed matter. Entanglement is frequently

used as an indicator of quantum phase transitions in condensed matter systems. We do not

cover this particular setting but the interested reader may find a comprehensive review

in [36].

Resource theories. Examples and common features of resource theories (beyond quantum

information theory) are discussed in [37]. In particular, different approaches to general

frameworks are discussed in section 10 of that work.

» Experimental implementations. Experiments with demons, thermal engines and work
extraction are discussed in more depth in the perspective article [38].

Definitions and notation. Conventions followed unless otherwise stated:
States. Discrete Hilbert spaces C?. States p are represented by Hermitian matrices
(Tr(p) = 1 and p > 0). Subsystems are denoted by Roman subscripts, p, := Trg(p,p)-
Entropy. Von Neumann entropy (see figure 2) with base 2 logarithm,
S(p) = —tr(p log,(p)).
Mutual information. Measures correlations, I (A : B), := S(py) + S(pg) — S(osp)-
Energy. Hamiltonian H, average energy (H), = tr(pH), eigenvalues {E };, eigenvectors
{1E) Y&, or {|E}))} «.i if there are degeneracies, with energy projectors I = 3, |EDY(E]L).
Thermal states. Gibbs state 7(8) = %, with partition function Z = Tr(e ) and
inverse temperature (3 := L
keT
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An early puzzle in thermodynamics: imagine a box filled with a gas, with a
partition in the middle. An agent (the demon) who can observe the microscopic
details of the gas particles, controls a small gate in the partition, selectively
opening it to let slow particles flow to the left and fast ones to the right.
This creates a temperature differential between the two sides. The demon
can exploit this difference to extract work, by letting the hot gas on the right
expand. This apparent contradiction with the second law of thermodynamics
can be easily explained from an information-theoretical viewpoint. The demon
had access to much more information than the standard observer assumed
in the derivation of traditional thermodynamics, who can only read a few
macroscopic parameters of a gas and assumes a uniform distribution over all
compatible micro-states. Therefore, it seems natural that the demon may
extract more work than predicted by standard thermodynamics—and this
insight motivates the need for thinking of thermodynamics as a subjective
resource theory, and extending it to the quantum regime. In the larger picture,
Bennett showed that the amount of work needed to erase the demon’s memory
at the end of the procedure (or equivalently, to prepare the memory to store
the necessary information on the particles in the beginning) precisely makes
up for the work extracted [1]. For reviews, see [2-6].

Figure 1. Maxwell’s demon.

Free energy. F3(p) = (H)y— 1555 (o).
Linbladian. £(p) generates Markovian, time-homogeneous, non-unitary dynamics.

2. Foundations of statistical mechanics

At first sight, thermodynamics and quantum theory are incompatible. While thermodynamics
and statistical mechanics state that the entropy of the Universe as a whole is a monotonically
increasing quantity, according to quantum theory the entropy of the Universe is constant since
it evolves unitarily. This leads us to the question of to which extent the methods of statistical
physics can be justified from the microscopic theory of quantum mechanics and both theories
can be made compatible. Unlike classical mechanics, quantum mechanics has a way to
circumvent this paradox: entanglement. We observe entropy to grow in physical systems
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In 1932, von Neumann designed this thought experiment to determine the
entropy of a density operator p [11]. The experiment accounts for the work
cost of erasing the state of a gas of n atoms, initially in an ensemble p®", with
P = 1Pk |0r) (&1, by transforming it into a pure state |¢>1>®" by means of a
reversible process.

It consists of 3 steps: 1. Separation of the species: the atoms in different
states |¢1),...,|¢m) inside a box of volume V are separated in different boxes
of the same volume V' by means of semi-permeable walls (from a to b and
finally ¢). Note that no work has been done and no heat has been exchanged.
2. Compression: every gas |¢p) is isothermally compressed to a volume
Vi = pxV (from ¢ to d). The mechanical work done in that process is
Wi = nprIn(Vi/V) = prlnpg. The total entropy increase per particle of
that process is AS = >, pr Inpi. 3. Unitary transformation: every gas is put
in the |¢1) state by applying different unitary transformations |¢r) — |é1),
which are taken for free (from d to e). As the entropy of the final state is zero,
the entropy of the initial ensemble reads S(p) = — Tr(plnp).

Historically, it is remarkable that the Shannon entropy, which can be seen as
a particular case of the von Neumann entropy for classical ensembles, was not
introduced until 1948 [7], and Landauer’s principle was proposed only in 1961
[12].

Figure 2. The thermodynamic origin of the von Neumann entropy.

Topical Review

because they are entangled with the rest of the Universe. In this section we review the
progress made on this topic in recent years which show that equilibration and thermalization

are intrinsic to quantum theory.

2.1. Equal a priori probabilities postulate as a consequence of typicality in Hilbert spaces

Let us consider a closed system that evolves in time restricted to some global constraint. The
principle of equal a priori probabilities states that, at equilibrium, the system is equally likely
to be found in any of its accessible states. This assumption lies at the heart of statistical
mechanics since it allows for the computation of equilibrium expectation values by
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performing averages on the phase space. However, there is no reason in the laws of
mechanics (and quantum mechanics) to suggest that the system explores its set of accessible
states uniformly. Therefore, the equal a priori probabilities principle has to be put in by hand.

One of the main insights from the field of quantum information theory to statistical
mechanics is the substitution of the Equal a priori probabilities postulate by the use of
typicality arguments [39, 40]. To be more precise, let us consider a quantum system described
by a Hilbert space Hg ® Hp where Hg contains the degrees of freedom that are experi-
mentally accessible and Hpg the ones that are not. In practice, we think of S as a subsystem that
we can access, and B as its environment (sometimes called the bath). Concerning the global
constraint, in classical mechanics, it is defined by the constants of motion of the system. In
quantum mechanics, we model the restriction as a subspace Hg C Hg ® Hg. Let us denote
by dr, ds and dg the dimensions of the Hilbert spaces Hg, Hg and Hp respectively.

The equal a priori probability principle would describe the equilibrium state as

Ir
&R = —, 1
R e (D

and would imply the state of the subsystem S to be
QS = TI'BER . (2)

In [39] it is shown that, if we look only at the subsystem S, most of the states in Hy are
indistinguishable from the equal a priori probability state, ie. for most |¢) € Hpg,
Trg |¥) (| = 2s. More explicitly, if |¢)) is randomly chosen in Hg according to the
uniform distribution given by the Haar measure, then the probability that Trg |1)) (1| can be
distinguished from €)g decreases exponentially with the dimension of Hg, dg

Prob[ || Tra(|) (Y1) = Qslh > dg "1 < 2exp (—Cdg’™), 3)
where C is a constant and ||-||; is the trace norm. The trace norm ||p — o|}; measures the
physical distinguishability between the states p and o in the sense that a
lp — alli = supy|Tr(Op) — Tr(Oo)|, where the maximization is made over all the

observables O with operator norm bounded by 1. The proof of equation (3) relies upon
concentration of measure and in particular on Levy’s Lemma (see [39] for details). Let us
mention that ideas in this spirit can be already found in Lloyd’s PhD Thesis [41] published in
1991. In particular, he presents bounds on how the expectation values of a fixed operator
taken over random pure states of a restricted subspace fluctuate.

The weakness of the previous result lies in that the use of typicality is made in the whole
subspace Hr and, as we will justify next, this is not a physical assumption. In nature,
Hamiltonians have local interactions and systems evolve for times that are much smaller than
the age of the Universe. Most states in the Hilbert space simply cannot be generated by
evolving an initial product state under an arbitrary time-dependent local Hamiltonian in a time
that scales polynomially in the system size [42]. Therefore, sampling uniformly from the
whole Hilbert space is not physically meaningful. There has been a strong effort to generalize
the concept of typicality for different sets of states [43—45].

The first ‘realistic’ set of states in which typicality was studied was the set of matrix
product states (MPS) [46, 47]. These type of states have been proven to describe ground
states of one-dimensional gapped Hamiltonians. They are characterized by the rank of a
bipartition of the state. This parameter quantifies the maximum entanglement between par-
titions of an MPS. The MPSs with fixed rank form a set of states with an efficient classical
representation (they only require polynomial resources in the number of particles). In [43], it
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Scheme of the restricted subspace Hp with its untypical states forming little
islands coloured in yellow. The left trajectory (dashed line) passes mostly on
typical states while the right trajectory (solid line) has a non-negligible support
on states that are not typical.

Figure 3. Typical and untypical trajectories.

is proven that typicality occurs for the expectation value of subsystems observables when the
rank of the MPS scales polynomially with the size of the system with a power greater than 2.

Another set recently considered in the literature has been the so called set of physical
states which consists of all states that can be produced by evolving an initial product state
with a local Hamiltonian for a time polynomial in the number of particles n. By Trotter
decomposing the Hamiltonian, such a set can be proven to be equivalent to the set of local
random quantum circuits, that is, quantum circuits of qubits composed of polynomially many
nearest neighbour two-qubit gates [42]. In [48], it was shown that the local random quantum
circuits form an approximate unitary two-design, i.e. that random circuits of only polynomial
length will approximate the first and second moments of the Haar distribution. In [44] the
previous work was extended to poly(n)-designs. Finally, let us mention that the entanglement
properties of typical physical states were studied in [45].

Let us mention that k-designs also appear naturally in the context of decoupling theorems
in which a the subsystem S undergoes a physical evolution separated from the environment B,
and one wonders under what conditions this evolution destroys all initial correlations between
S and B. In particular, in [49] it is shown that almost-two-designs decouple the subsystem §
from B independently of B’s size.

Another objection against typicality is that there are many physically interesting systems,
e.g. integrable models, which, although their initial state belongs to a certain restricted
subspace Hg, their expectation values differ from the completely mixed state in R, eg, as
expected from typicality arguments. This is a consequence of the fact that their trajectories in
the Hilbert subspace Hg do not lie for the overwhelming majority of times on generic states
(see figure 3). Hence, in practice, statements on equilibration and thermalization will depend
on the dynamical properties of every system, that is, on their Hamiltonian. This leads us to the
notion of dynamical typicality. In contrast to the kinematic typicality presented in this section,
where an ensemble has been defined by all the states that belong to a certain subspace, in
dynamical typicality the ensemble is defined by all states that share the same constants of
motion given a Hamiltonian H and an initial state |1 (0)). Studying whether typicality also
holds in such a set will be precisely the problem addressed in the next section.

8
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2.2. Equilibration. Maximum entropy principle from quantum dynamics

In this context of deriving thermodynamics from quantum mechanics the first problem that
needs to be addressed is equilibration, that is, understand how the reversible unitary dynamics
of quantum mechanics make systems equilibrate and evolve towards a certain state where
they remain thereafter.

Because of the unitary dynamics, equilibration is only possible if the set of observables is
restricted. In this spirit, a set of sufficient conditions for equilibration towards the time
averaged state has been presented for local observables [50, 51] and observables of finite
precision [52, 53]. The two approaches are proven to be equivalent in [54] and it is
remarkable that the conditions given are weak and naturally fulfilled in realistic situations.

For simplicity, let us here focus on equilibration of subsystems and, as above, identify in
the total system a subsystem § and its environment B. The dynamics of the total system are
governed by the Hamiltonian H with eigenvalues {E} }; and eigenvectors { |E;) } . This leads
to the time evolution |1 (1)) = e~ |4)(0)) and the reduced state of S is pg(r) = Trpp(t)
with p () = [ () (P (1)].

If equilibration happens, then it happens towards the time averaged state i.e. wg := Trgw
with

. 1 pT
w=lim — [ pdr= P OF @)

with P, the projectors onto the Hamiltonian eigenspaces. The time averaged state is the initial
state dephased in the Hamiltonian eigenbasis. For this reason it is also called diagonal
ensemble.

In [50], a notion of equilibration is introduced by means of the average distance (in time)
of the subsystem p¢(¢) from equilibrium. A subsystem S is said to equilibrate if

.1 T
<||.0s(t) — wsll): = TILH;?L/; dr ||Ps(t) —wslh <1, )

where || pg () — wy || is the trace distance. If this average trace distance can be proven to be
small, then the subsystem S is indistinguishable from being at equilibrium for almost all
times.

Equilibration as a genuine property of quantum mechanics is shown in [50] by precisely
proving that this average distance is typically small. More concretely, if the Hamiltonian that
dictates the evolution of the system has non-degenerate gaps i.e. all the gaps of the
Hamiltonian are different (an assumption which we will comment on below), then the average
distance from equilibrium is bounded by

d ds
(lps@) — wslh) < m S \/deTS(w)’ ©

where d° (p) == 1/Tr(p?) is the effective dimension of p and wp = Trsw. Roughly speaking,
the effective dimension of a state tells us how many eigenstates of the Hamiltonian support
such state. It can also be related to the two-Renyi entanglement entropy by
S»(p) = logd*f (p). Hence, equation (6) guarantees equilibration for Hamiltonians with
non-degenerate energy gaps as long as the initial state is spread over many different energies.

Although the condition of having non-degenerate gaps may look very restrictive at first
sight, note that Hamiltonians that do not fulfil it form a set of zero measure in the set of
Hamiltonians, since any arbitrarily weak perturbation breaks the degeneracy of the gaps. In
[51], the non-degenerate gaps condition was weakened by showing that equilibration occurs
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provided that no energy gap is hugely degenerate. This condition can be understood as a way
of preventing the situation where there is a subsystem which does not interact with the rest.

Let us finally point out that the equilibrium state introduced in equation (4) is precisely
the state that maximizes the von Neumann entropy given all the conserved quantities [55].
This observation turns the principle of maximum entropy into a consequence of the quantum
dynamics. The principle of maximum entropy was introduced by Jaynes in [17] and states that
the probability distribution which best represents the current state of knowledge of the system
is the one with largest entropy given the conserved quantities of the system. We will come
back in more detail to the Jaynes principle in the next section when the thermalization for
integrable systems is discussed.

2.3. Thermalization. Emergence of Gibbs states in local Hamiltonians

The next step in this program of justifying the methods of statistical mechanics from quantum
mechanics is to tackle the issue of thermalization, i.e. to understand why the equilibrium state
is usually well described by a Gibbs state, which is totally independent of the initial state of
the system, except for some macroscopic constraints such as its mean energy. In [56], a set of
sufficient conditions for the emergence of Gibbs states is presented for the case of a sub-
system S that interacts weakly with its environment B through a coupling V. The Hamiltonian
that describes such a situation is H = Hg + Hg + V. These conditions are a natural trans-
lation of the three ingredients that enter the standard textbook proof of the canonical ensemble
in classical statistical physics:

(1) The equal a priory probability postulate that has been replaced by typicality arguments
in section 3.1, and an equilibration postulate (such as the second law) that has been
replaced by quantum dynamics in section 3.2.

(i1) The assumption of weak-coupling. Here, the standard condition from perturbation theory,
IVl < gaps(H), is not sufficient in the thermodynamic limit, due to the fast growth of
the density of states and the corresponding shrinking of the gaps in the system size.
Instead, it is replaced with a physically relevant condition, ||V ||, < kg T, which is
robust in the thermodynamic limit.

(iii) An assumption about the density of states of the bath®, namely, that it grows faster than
exponentially with the energy and that it can be locally approximated by an exponential.

Note that the weak-coupling condition will not be satisfied in spatial dimensions higher
than one for sufficiently large subsystems, since the interaction strength typically scales as the
boundary of the subsystem S. This will be the case regardless of the strength of the coupling
per particle or the relative size between S and B. This should not be seen as a deficiency of the
above results, but as a feature of strong interactions. Systems that strongly interact with their
environment do not in general equilibrate towards a Gibbs state, in a similar way that the
reduced state (of a part) of a Gibbs state need not have Gibbs form [57, 58]. In this context,
the findings of [59] suggest that subsystems do not relax towards a local Gibbs state but to the
reduction of the global Gibbs state; this is shown for translation-invariant quantum lattices
with finite range but arbitrarily strong interactions. The eigenstate thermalization hypothesis
(ETH) [60, 61] gives further substance to this expectation. ETH has several formulations. Its
simplest one is maybe the one introduced in [61]. It states that the expectation value
(Ex| O |E;) of a few-body observable O in an individual Hamiltonian eigenstate |E;) equals

5 The density of states of the bath ¢ (E) is the number of eigenstates of the bath with energy close to E.
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the thermal average of O at the mean energy E,. Although ETH has been observed for some
models, it is not true in general and it is well known to break down for integrable models (see
[61] for an example with hard-core bosons and references in [28] for further examples).

In the same spirit, it has recently been proven that a global microcanonical state (the
completely mixed state of a energy shell subspace spanned by the Hamiltonian eigenstates
with energy inside a narrow interval) and a global Gibbs state are locally indistinguishable for
short range spin Hamiltonians off criticality, that is, when they have a finite correlation length
[62]. This represents a rigorous proof of the so called equivalence of ensembles. If the
Hamiltonian is not translationally invariant, the local indistinguishability between canonical
and microcanonical ensembles becomes a typical property of the subsystems, allowing for
rare counterexamples.

Concerning the latter condition on the density of states of the bath, in [63] it has been
proven that the density of states of translational invariant spin chains tends to a Gaussian in
the thermodynamic limit, matching the suited property of being well approximated by an
exponential. In [62], the same statement is proven for any short ranged spin Hamiltonian.

Let us finally point out that not all systems thermalize. For instance, integrable systems
are not well described by the Gibbs ensemble. This is due to the existence of local integrals of
motion, i.e. conserved quantities, O, that keep the memory about the initial state. Instead,
they turn to be described by the generalized Gibbs ensemble (GGE) defined as

TGGE < CXP[—ﬁ(H + ZNQQ@])» )

where the generalized chemical potential p, is a Lagrange multiplier associated to the
conserved quantity Q,, such that its expectation value is the same as the one of the initial state.
The GGE was introduced by Jaynes in [17] where he pointed out that statistical physics can
be seen as statistical inference and an ensemble as the least biased estimate possible on the
given information. Nevertheless, note that any system has as many conserved quantities as the
dimension of the Hilbert space, e.g. Q, = |E,)(E,|. If one includes all these conserved
quantities into the GGE the ensemble obtained is the diagonal ensemble introduced in
equation (4). Note that the description of the equilibrium state by the diagonal ensemble
requires the specification of as many conserved quantities as the dimension of the Hilbert
space, which scales exponentially in the system size, and becomes highly inefficient. A
question arises here naturally, is it possible to provide an accurate description of the
equilibrium state specifying only a polynomial number of conserved quantities? If so, what
are these relevant conserved quantities Q. that allow for an accurate and efficient
representation of the ensemble? This question is tackled in [64]. There, it is argued that the
relevant conserved quantities are the ones that make the GGE as close as possible to the
diagonal ensemble in the relative entropy distance D (w||7Ggg), Which in this particular case
can be written as

D (wllt6ae) = S(T6ae) — S(w), ®)
where we have used that the diagonal ensemble and the GGE have by construction the same
expectation values for the set of selected conserved quantities, i.e. Tr(Q,76ge) = Tr(Q,w).
Equation (8) tells us that the relevant conserved quantities are the ones the minimize the
entropy S (7gge)- Note that in contrast to Jaynes approach, where entropy is maximized for a
set of observables defined beforehand, here the notion of physically relevant is provided by

how much an observable is able to reduce the entropy by being added into the set of
observables that defines the GGE.
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If instead of calculating the relative entropy between the diagonal ensemble and the
GGE’s we do it with respect to the set of product states, i.e.
T(w)= min DWlm®m® ...T), ©)
Ty Ty +evs Ty
then we obtain a measure of the total (multipartite) correlations of the diagonal ensemble. In
[65] the scaling with system size of the total correlations of the diagonal ensemble has been
shown to be connected to ergodicity breaking and used to investigate the phenomenon of
many-body localization.

2.4. Equilibration times

Maybe the major challenge that is still open in the equilibration problem is to determine the
equilibration timescale. It turns out that even if we know that a system equilibrates, there are
no relevant bounds on how long the equilibration process takes. There could be quantum
systems that are going to equilibrate, but whose equilibration times are of the order of
magnitude of the age of the Universe, or alternatively, some systems, like glasses, which do
not relax to equilibrium at all, but have metastable states with long lifetimes. The problem of
estimating equilibration timescales is thus essential in order to have a full understanding of
thermalization.

So far, progress on this issue has taken place from two different approaches. On the one
hand, rigorous and completely general bounds on equilibration times have been presented in
[51]. Due to their generality, these bounds scale exponentially with the system size, leading to
equilibration times of the age of the Universe for macroscopic systems. On the other hand,
very short equilibration times have been proven for generic observables [66], Hamiltonians
[67-71], and initial states [72]. In nature, systems seem to equilibrate in a time that is neither
microscopic nor exponential in the system size. A relevant open question is what properties of
the Hamiltonians and operators lead to reasonable equilibration time. As a first step, in [73], a
link between the complexity of the Hamiltonian’s eigenvectors and equilibration time is
presented. The result does not completely solve the question, since the given bounds are not
fulfilled by all Hamiltonians but only by a fraction of them, and further research in this
direction is needed.

2.5. Outlook

The aim of this section has been to justify that thermal states emerge in Nature for generic
Hamiltonians. To complete the picture presented here we recommend the article [28] where
an extensive review of the literature on foundations of statistical mechanics is provided.

The main ideas presented here have also been widely studied in the context of condensed
matter physics, in which systems are typically brought out of equilibrium by sudden (and
slow) quantum quenches: the Hamiltonian of a system (that is initially in the ground state) is
suddenly (or smoothly) changed in time. We recommend the review article [29] on non-
equilibrium dynamics of closed interacting quantum systems.

Let us finish the section with a list of some of the open problems that we consider most
relevant in the field:

* Typicality for symmetric states. Hamiltonians in nature are not generic but have
symmetries. Hence, the notion of typicality should be extended to physical states that are
produced by symmetric Hamiltonians.

* Quantum notion of integrability. One of the reasons why it is so difficult to extract strong
statements on the equilibration and thermalization of many body quantum systems is the
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absence of a satisfactory quantum notion of integrability [74]. This leads first to some
widespread confusion, since integrability is mentioned very often in the field of non-
equilibrium dynamics, and second it does not allow us to classify quantum systems into
classes with drastically different physical behaviour, like what occurs in classical
mechanics.

Equilibration times. Without bounds on the equilibration time scales, statements on
equilibration become useless. As we have seen, the equilibration times are model
dependent. We need then to understand how the equilibration times depend on the
features of the Hamiltonian and the set of observables considered.

Relative thermalization. It was highlighted in [75] that local thermalization of a
subsystem S, as described here, is not enough to guarantee that S will act as thermal bath
towards another physical system R. In other words, imagine that we want to perform
quantum thermodynamics on a reference system R, using S as a thermal bath. To model a
thermodynamic resource theory that recovers the laws of thermodynamics, it is not
sufficient to demand that S be in a local Gibbs state 75(3). Indeed we need S to be
thermalized relative to R, that is the the two systems should be uncorrelated, in global
state, 73 (3) ® pg. If this does not hold, then we cannot recover the usual thermodynamic
monotones (for instance, there could be anomalous heat flows against the temperature
gradient). Therefore, the relevant question for resource theories of thermodynamics is not
only ‘does S thermalize locally after evolving together with an environment?’, but rather
‘does S thermalize relative to R after evolving together with an environment?’, and the
results discussed in this section should be generalized to that setting. First steps in this
direction can be found in [75], where the authors use decoupling—a tool developed in
quantum information theory to find initial conditions on the entropies of the initial state
that lead to relative thermalization.

3. Resource theories

In the previous section we reviewed recent progress in understanding how systems come to
equilibrium, and in particular thermal equilibrium. We will now take thermalization as a
given, and in the remaining of this review we explore the thermodynamics of quantum
systems that interact with thermal states. We will start from an operational point of view,
treating the thermal state as a ‘free resource’, a view inspired by other resource theories from
quantum information.

In this section we discuss the approach of thermodynamics as a resource theory in more
detail. Let us start by introducing the basic ideas behind resource theories that can be found in
the literature, entanglement theory being the paradigmatic example. The first step is to fix the
state space S, which is usually compatible with a composition operation—for instance,
quantum states together with the tensor product, in systems with fixed Hamiltonians. The next
step is to define the set of allowed state transformations. For thermodynamics, these try to
model adiabatic or isothermal operations—Ilike energy-preserving reversible operations, and
contact with a heat bath.

The set of allowed operations induces a structure on the state space: we say that p — o if
there is an allowed transformation from p to 0. The relation — is a pre-order, that is, a binary
relation that is both reflexive (p — o) and transitive (p — o and ¢ — 7 implies p — T7; this
results from composing operations one after the other).
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The task now is to find general properties of this structure. A paradigmatic example is
looking for simple necessary and sufficient conditions for state transformations. The most
general case are functions such that

ep—0=f(p,o) =0 (that is, f(p, o) >0 is a necessary condition for state
transformations), or

* f(p,o)20=p— o (that is, f(p, o) >0 is a sufficient condition for state
transformations).

Often, we try to find necessary and sufficient conditions as functions that can be written like
f(p, 0) =g(p) — h(o). In the special case where g = h for a necessary condition
(p — o= g(p) = g(0)), we call g a monotone of the resource theory. For example, in
classical, large-scale thermodynamics, the free energy is a monotone.

In order to quantify the cost of state transformations, we often fix a minimal unit in terms
of a standard resource that can be composed. For example, in entanglement theory the
standard resource could be a pair of maximally entangled qubits, and in quantum thermo-
dynamics we could take a single qubit (with a fixed Hamiltonian) in a pure state. The question
then is ‘how many pure qubits do I need to append to p in order to transform it into o?° or,
more generally, ‘what is the cost or gain, in terms of this standard resource, of the trans-
formation p — o7 [76-78].

One may also try to identify special sets of states. The most immediate one would be the
set of free states: those that are always reachable, independently of the initial state. In standard
thermodynamics, these tend to be what we call equilibrium states, like Gibbs states. Another
interesting set is that of caralysts, states that can be repeatedly used to aid in transformations.
We will revisit them shortly.

3.1. Models for thermodynamics

Now that we have established the basic premise and structure of resource theories, we may
look at different models for resource theories of thermodynamics, which vary mostly on the
set of allowed operations. In the good ‘spherical cow’ tradition of physics, the trend has been
to start from a very simple model that we can understand, and slowly expand it to reflect more
realistic scenarios. In general there are two types of operations allowed: contact with a thermal
bath and reversible operations that preserve some thermodynamic quantities. Each of those
may come in different flavours.

3.1.1. Noisy and unital operations. In the simplest case, all Hamiltonians are fully
degenerate, so thermal states of any temperature are just fully mixed states, and there are no
special conserved quantities. In this setting, thermodynamics inherits directly from the theory
of noisy operations [79]. We may model contact with a thermal bath as composition with any
system in a fully mixed state, and reversible operations as any unitary operation. Furthermore,
we assume that we can ignore, or trace out, any subsystem. Summing up, noisy operations
have the form

1 N
Tlpy) = trAf[UAB [pA ® E]U)
where A’ is any subsystem of AB and U is a unitary matrix. Alternatively, we may allow only
for maps that preserve the fully mixed state, 75 _.p: 7ao_B |1A_A| = IIT?I’ called unital maps
(an example would be applying one of two isometries and then forgetting which one). The
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two sets—noisy operations and unital maps—induce the same pre-order structure in the state
space. In this setting, majorization is a necessary and sufficient condition for state
transformations [79]. Roughly speaking, majorization tells us which state is the most mixed.
Formally, letr = (ry, r2,...,ry) and s = (sy, 2 ,..., Sy) be the eigenvalues of two states p and o
respectively, in decreasing order. We say that r majorizes S if Zf:, n> Zf-;l s;, for any
k < N. In that case p — o; monotones for this setting are called Schur monotone functions,
of which information-theoretical entropy measures are examples [78, 80-83]. For example, if
p majorizes o, then the von Neumann entropy of p, S(p) = —tr(plog,p), is smaller than
S (o). For a review, see [83].

3.1.2. Thermal operations. The next step in complexity is to let systems have non-
degenerate Hamiltonians. The conserved quantity is energy, and equilibrium states are Gibbs
states of a fixed temperature 7. For instance for a system A with Hamiltonian Hj,, the
equilibrium state is 75 (3) = e %/ Z. We can model contact with a heat bath as adding any
system in a Gibbs state—this corresponds to the idealization of letting an ancilla equilibrate
for a long time. A first approach to model physical reversible transformations is to allow for
unitary operations U that preserve energy—either absolutely (U, H] = 0) or on average
(tr(Hp) = tr(H (UpU™)) for specific states). Finally, we are again allowed to forget, or trace
out, any subsystem. Together, these transformations are called thermal operations,

T(py) = try(Usplpy ® () 1ULR),

where A’ is any subsystem of AB and U is an energy-conserving unitary [84]. The monotones
found so far are different versions of the free energy, depending on the exact regime [82, 85—
88] (see example 1). It is worth mentioning we can build necessary conditions for state
transformations from these monotones, but sufficiency results are only known for classical
states (states that are block-diagonal in the energy eigenbasis) [82] and any state of a single
qubit [89, 90]. In the limit of a fully degenerate Hamiltonian, we recover the resource theory
of noisy operations.

Example 1. Free energy as a monotone. This is an example of finding monotones for the
resource theory of thermal operations [85]. We are interested in finding the optimal rates of
conversion between two states p and o, in the limit of many independent copies
R(p — o) := sup lim p®" — g®fn,
R n—oo

If both R(p — o), R(c — p) > 0, and these quantities represent optimal conversion rates,
then the process must be reversible, that is, R(p — o) = 1/R(c — p); otherwise we could
build a perpetual motion engine, and the resource theory would be trivial. The idea is to use a
minimal, scalable resource « as an intermediate step. We can think of « as a currency: we will
sell n copies of p for a number of coins, and use them to buy some copies of . To formalize
this idea, we define the selling and buying cost of a state p, or more precisely the distillation
and formation rates

1

D = — F = — = —
R%(p) =R(p — a), R" (p) = R(ax — p) RD ()’

In the optimal limit we have the process

pn_>anR”(p)_>o.nR’)(p)RF(U) = pn_>0.nR(p—>(r)’
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which gives us the relation

RP(p)

R(p — 0) = R0 (o)’

We have reduced the question to finding the distillation rate, which depends on the choice of
a. For example, take p, o and « to be classical states (diagonal in the energy basis) of a qubit
with Hamiltonian H = A |1)(1]. For the currency, we choose o = |1){1|. The distillation
rate is found by use of information-compression tools [85]. It is given by the relative entropy
between p and the thermal state 7 (3),

RP(p) = D(p||T(B))
=tr(p(logp — log7(53)))
= B(Fz(p) — F3(7(B))),

where F3(p) = (E), — 37'S(p) is the free energy of p at inverse temperature 3. All in all, we
find the conversion rate

_ B~ B ®)
F3(0) — F3(r(B))

Now we can apply this result to find a monotone for a single-shot scenario: in order to have
p — o we need in particular that R(p — o) > 1. In other words, we require F3(p) > Fz(p),
thus recovering the free energy as a monotone for the resource theory of thermal operations. If
we work directly in the single-shot regime, we recover a whole family of monotones [82]
based on quantum Rényi relative entropies [91], of which the free energy is a member.

R(p — 0)

3.1.3. Gibbs-preserving maps. Following the example of the theory of noisy operations, we
could try to replace these thermal operations with so-called Gibbs-preserving maps, that is,
maps such that 7o _,g(7a (8)) = 73(08). This constraint is easier to tackle mathematically, and
the two resource theories induce the same pre-order on classical states, leading to a condition
for state transformation called Gibbs-majorization (which is majorization after a rescaling of
the eigenvalues) [87]. However, Gibbs-preserving maps are less restrictive than thermal
operations for general quantum states [92]. For example, suppose that you have a qubit with
the Hamiltonian H = E [1)(1|, and you want to perform the transformation
[1) — | 4+ ) = (J0) + |1))/+/2. This is impossible through thermal operations, which
cannot create coherence; yet there exists a Gibbs-preserving map that achieves the task. We
may still use Gibbs-preserving maps to find lower bounds on performance, but at the moment
we cannot rely on them for achievability results, as they are not operationally defined.

3.1.4. Coherence. The difference between thermal operations and Gibbs-preserving maps is
not the only surprise that quantum coherence had in store for thermodynamics enthusiasts.
The question of how to create coherence in the first place led to an intriguing discovery. In
order to achieve the above transformation|1) — | + ) through thermal operations, we need to
draw coherence from a reservoir. A simple example of a coherence reservoir would be a
doubly infinite harmonic oscillator, H =" __ nA |n)(n|, in a coherent state like
[0y = Nflzgz’ |n). Lasers approximate such reservoirs, which explains why we can use
them to apply arbitrary transformations on quantum systems like ion traps. One may ask what
happens to the reservoir after the transformation: how much coherence is used up? Can we
use the same reservoir to perform a similar operation in a new system? The unexpected
answer is that coherence is, in a sense, catalytic: while the state of the reservoir is affected, its
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ability to implement coherent operations is not [93]. What happens is that the state of the
reservoir ‘spreads out’ a little with each use, but the property that determines the efficacy of
the reservoir to implement operations stays invariant. In more realistic models for coherence
reservoirs, where the Hamiltonian of the reservoir has a ground state, the catalytic properties
hold for some iterations, until the state spreads all the way down to the ground state. At that
stage, the reservoir needs to be recharged with energy to pump up the state again. Crucially,
we do not need to supply additional coherence. In the converse direction, we know that
coherence reservoirs only are critical in the single-shot regime of small systems. Indeed, in the
limit of processing many copies of a state simultaneously, the work yields of doing it with and
without access to a coherence reservoir converge [94].

3.1.5. Catalysts. The catalytic nature of coherence raises more general questions about
catalysts in thermodynamics. Imagine that we want to perform a transformation p — o in a
system S, and we have access to an arbitrary ancilla in any desired state . Now suppose that
our constraint is that we should return the ancilla in a state that is e-close to ~:

Ps @ Yp — OsA ' lloa — Wl < e

The question is whether we can overcome the usual limits found in thermal operations by use
of this catalyst. In other words, can we perform the above transformation in cases where
p — o would not be allowed? It turns out that if no other restrictions are imposed on the
catalyst, then for any finite € and any two states p and o, we can always find a (very large)
catalyst that does the job [82]. These catalysts are the thermodynamic equivalent of
embezzling states in LOCC [95]. However, if we impose reasonable energy and dimension
restrictions on the catalyst, we recover familiar monotones for state transformations [82, 96].
These restrictions and optimal catalysts result from adapting the concept of trumping relations
on embezzling states [97, 98] to the thermodynamic setting. In particular, if we demand that
€ o n~!, where 7 is the number of qubits in the catalyst, we recover the free energy constraint
for state transformations [96]. A relevant open question, motivated by the findings of catalytic
coherence, is what happens if we impose operational constraints on the final state of the
catalyst. That is, instead of asking that it be returned e-close to <, according to the trace
distance, we may instead impose that its catalytic properties stay unaffected. It would be
interesting to see if we recover similar conditions for allowed transformations under these
constraints.

3.1.6. Clocks. All of resource theories mentioned allow for energy-preserving unitary
operations to be applied for free. That is only the ‘first order’ approach towards an accurate
theory of thermodynamics, though. Actually, in order to implement a unitary operation, we
need to apply a time-dependent Hamiltonian to the systems involved. To control that
Hamiltonian, we require very precise time-keeping—in other words, precise clocks, and we
should account for the work cost of using such clocks. Furthermore, clocks are clearly out of
equilibrium, and using them adds a source of free energy to our systems. Including them
explicitly in a framework for work extraction forces us to account for changes in their state,
and ensures that we do not cheat by degrading a clock and drawing its free energy. First steps
in this direction can be found in [66]. There, the goal is to implement a unitary transformation
in a system S, using a time-independent Hamiltonian. For this, the authors introduce an
explicit clock system C hat runs continuously, as well as a weight W that acts as energy and
coherence reservoir. The global system evolves under a time-independent Hamiltonian,
designed such that the Hamiltonian applied on S depends on the position of the clock—which
effectively measures time. The authors show that such a construction allows us to
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approximately implement any unitary operation on S, while still obeying the first and second
laws of thermodynamics. Furthermore, the clock and the weight are not degraded by the
procedure (just like for catalytic coherence). In particular, this result supports the idea behind
the framework of thermal operations: that energy-conserving unitaries can approximately be
implemented for free (if we neglect the informational cost of designing the global
Hamiltonian). Note that this is still an idealized scenario, in which the clock is infinite-
dimensional and moves like a relativistic particle (the Hamiltonian is proportional to the
particle’s momentum). A relevant open question is whether there exist realistic systems with
the properties assigned to this clock, or alternatively how to adapt the protocol to the
behaviour of known, realistic clocks. That direction of research can be related to the resource
theory of quantum reference frames [89, 99—101]. An alternative direction would be to ask
what happens if we do not have a clock at all—can we extract all the work from a quantum
state if we are only allowed weak thermal contact? This question is studied (and answered in
the negative, for general states) in [102].

Example 2. Heat engines. The extreme case where one of our resources is in itself a second
heat bath is of particular interest. This is a very natural scenario in traditional
thermodynamics: steam engines used a furnace to heat a chamber, and exploit the
temperature difference to the cooler environment. The study of this limit led to landmark
findings like trains, fridges and general heat engines, and to theoretical results on the
efficiency of such engines. One might wonder whether these findings can also be applied at
the quantum scale, and especially to very small systems composed only of a couple of qubits
[25, 103]. The answer is yes: not only is it possible to build two-qubit heat engines, but they
achieve Carnot efficiency [104, 105]. It is possible to build heat engines that do not require a
precise control of interactions, in other words, that do not require a clock [104, 106].

3.1.7. Free states and passivity. It is now time to question the other assumption behind the
framework of thermal operations: that Gibbs states come for free. There are two main
arguments to support it: firstly, Gibbs states occur naturally under standard conditions, and
therefore are easy to come by; secondly, they are useless on their own. The first point,
typicality of Gibbs states, is essentially the fundamental postulate of statistical mechanics:
systems equilibrate to thermal states of Gibbs form. This assumption is discussed and
ultimately justified from first principles in section 3. The second point is more subtle. Pusz
and Woronowicz first introduced the notion of passive states, now adapted to the following
setting [107-109]. Let S be a system with a fixed Hamiltonian H, in initial state p. We ask
whether there is a unitary U that decreases the energy of S, that is

tr(pH) > tr(UpU'H).

If we can find such a unitary, then we could extract work from S by applying U and storing
the energy difference in a weight system. If there is no U that achieves the condition above,
then we cannot extract energy from p, and we say that the state is passive. The latter applies to
classical states (i.e., diagonal in the energy basis) whose eigenvalues do not increase with
energy. However, suppose that now we allow for an arbitrary number » many copies of p and
a global unitary Uy. The question becomes whether

1
tr(pH) > ;tr(Ugl pen Ung Hy),

where Hy is the global Hamiltonian, which is the sum of the independent local Hamiltonians
of every system. If this is not possible for any n, we say that p is completely passive, and it
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turns out that only states of Gibbs form, p = 7(3) are completely passive. Moreover, Gibbs
states are still completely passive if we allow each of the n subsystems to have a different
Hamiltonian, as long as all the states correspond to the same inverse temperature 3. This
justifies the assumption that we may bring in any number and shape of subsystems in thermal
states for free, because we could never extract work from them alone—another resource is
necessary, precisely a state out of equilibrium. More formally, it was shown that if a resource
theory allows only for energy-conserving unitaries and composition with some choice of free
states, Gibbs states are the only choice that does not trivialize the theory [82, 110].

3.1.8. Different baths. The results outlined above suggest that thermodynamics can be
treated as information processing under conservation laws, and so researchers began to
experiment with other conserved quantities, like angular momentum [111-113], using the
principle of maximum entropy to model thermal momentum baths. The state of those baths
has again an exponential Gibbs form, with operators like L replacing H. The same type of
monotones emerged, and similar behaviour was found for more general conserved quantities
[110, 114].

3.1.9. Finite-size effects. Another setting of practical interest is when we have access to a
heat bath but may not draw arbitrary thermal subsystems from it. For instance, maybe we
cannot create systems with a very large energy gap, or we can only thermalize a fixed number
of qubits. In this case, the precision of state transformations is affected, as shown in [115], and
we obtain effective measures of work cost that converge to the usual quantities in the limit of
a large bath. The opposite limit, in which all resources are large heat baths, leads to the idea of
heat engines (example 2).

3.1.10. Single-shot regime. Some of the studies mentioned so far characterize the limit of
many independent repetitions of physical experiments, and quantify things like the average
work cost of transformations or conversion rates [85, 94]. The monotones found (like the von
Neumann entropy and the usual free energy) are familiar from traditional thermodynamics,
because this regime approximates the behaviour of large uncorrelated systems. As we move
towards a thermodynamic theory of individual quantum systems, it becomes increasingly
relevant to work in the single-shot regime. Some studies consider exact state transformations
[76, 77, 113], while others allow for a small error tolerance
[78, 80, 81, 86, 87, 110, 114, 116, 117]. The monotones recovered correspond to
operational entropy measures, like the smooth max-entropy (see example 3), and variations of
a single-shot free energy that depend on the conservation laws of the setting; in general, they
can be derived from quantum Rényi relative entropies [91] between the initial state and an
equilibrium state [82, 118]. Single-shot results converge asymptotically to the traditional ones
in the limit of many independent copies. The relation between single-shot and average
regimes is studied via fluctuation theorems in [119].

3.1.11. Definitions of work. In classical thermodynamics, we can define work as some form
of potential energy of an external device, which can be stored for later use. For instance, if a
thermodynamic process results in the expansion of a gas against a piston, we can attach that
piston to a weight, that is lifted as the gas expands. We count the gain in gravitational
potential energy as work—it is well-ordered energy that can later be converted into other
forms, according to the needs of an agent. A critical aspect is that at this scale fluctuations are
negligible, compared to the average energy gain. In the regime of small quantum systems, this
no longer holds, and it is not straightforward to find a good definition of work. Without a
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framework for resource theories of thermodynamics, a system for work storage is often left
implicit. One option is to assume that we can perform any joint unitary operation Ugg in a
system S and a thermal bath B, and work is defined as the change in energy in the two systems
manipulated, W := tr(Hsp pgg) — tr(Hsg Usg pgg U;B), where Hgpg is the (fixed) Hamiltonian
of system and bath, and pg the initial state [115]. Another example, inheriting more directly
from classical thermodynamics, assumes that we can change the Hamiltonian of S and bring it
in contact with an implicit heat bath [120]; work at a time ¢ is then defined as

b » dHs (1)
W (1) = fo di tr(ps(t = )
To study fluctuations around this average value, we consider work to be a random variable in
the single-shot setting—this is explored in section 6. Note that in these examples work is not
operationally motivated; rather it is defined as the change of energy that heat cannot account
for. Resource theories of thermodynamics, with their conservation laws, force us to consider
an explicit system W for work storage. We act globally on § ® W, and we can define work in
terms of properties of the reduced state of W. One proposal for the quantum equivalent of a
weight that can be lifted, for the resource theory of thermal operations, is a harmonic
oscillator, with a regular Hamiltonian Hy = }_, n € |n)(n|. The energy gaps need to be
sufficiently small to be compatible with the Hamiltonian of S; in the limit ¢ — O the
Hamiltonian becomes Hy = f dx x [x){x| [86, 105]. Average work is defined as

tr(Hy pf}Vi“al) — tr(Hy pa}i‘ial), and fluctuations can be studied directly in the final state of
the work storage system, py,. This approach also allows us to observe other effects, such as
the build up of coherences in W, and of correlations between W and S. Another advantage is
that we can adapt the storage system to other resource theories: for instance, we can have an
angular momentum reservoir composed of many spins, and count work in terms of
polarization of the reservoir [112]. These approaches are critically analysed in [121]; in
particular, it is highlighted that some do not distinguish work from heat. For instance,
thermalizing the work storage system may result in an increase of average energy, which is
indiscriminately labelled as ‘average work’. In the same paper, an axiomatic approach to
define work is proposed, based onconcepts from resource theories and interactive proofs.
There, work is seen as a figure of merit: a real function assigned to state transformations,
W(p — o). Starting from a couple of assumptions, the authors derive properties of acceptable
work functions W: for instance, that they can be written as the difference between a
monotone for initial and final state, W(p — o) = g(p) — g(o). The free energy is an
example of such a valid work function.

Example 3. Landauer’s principle. How much energy is needed to perform logical
operations? What are the ultimate limits for heat dissipation of computers? These questions
lie at the interface between thermodynamics and information theory, are of both foundational
and practical interest. As Bennett realized, all computations can be decomposed into
reversible operations followed by the erasure of a subsystem [122]. If we assume that the
physical support of our computer is degenerate in energy, we recover the setting of noisy
operations, in which unitaries are applied for free. That way, the thermodynamic cost of
computation is simply the cost of erasure, which is defined as taking a system from its initial
state p to a standard, predefined pure state |0) (like when we format a hard drive). Rolf
Landauer first proposed that the work cost of erasing a completely unknown bit of
information (think of a fully mixed qubit) in an environment of temperature 7'is kg7 In2 [12].
That very same limit was also found for quantum systems, in the setting of thermal operations
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[115, 123], for the ideal case of an infinitely large heat bath and many operations; finite-size
effects are analysed in [115].

Using Landauer’s principle as a building block, we can approach the more general
question of erasing of a system that is not in a completely unknown state, but rather about
which we have partial information. For example, imagine that we want to perform an
algorithm in our quantum computer, and then erase a subsystem S (which could be a register
or ancilla). The rest of our computer may be correlated with S, and therefore we can use it as a
memory M, and use those correlations to optimize the erasure of S. In short, we want to take
the initial state pg,, to |0)(0|s ® p,,, erasing S but not disturbing M. It was shown [78, 81]
that the optimal work cost of that transformation is approximately Hp,, (S|M),kgT In2,
where e parametrizes our error tolerance and Hy,, (S|M), is the smooth max entropy, a
conditional entropy measure that measures our uncertainty about the state of S, given access
to the memory M. It converges to the von Neumann entropy in the limit of many independent
copies. In the special case where S and M are entangled, it may become negative—meaning
that we may gain work in erasure, at the cost of correlations. Not incidentally, these results
use quantum information processing techniques to compress the correlations between S and M
before erasure; after all, ‘information is physical’ [124].

3.2. Generalizing resource theories

Let us now abstract from particular resource theories, and think about their common features,
and how we may generalize them.

3.2.1. Starting from the pre-order. As mentioned before, the set of allowed transformations
imposes a pre-order structure (S, <) on the state space S. One direction towards exploring the
concept of resource theories could be to start precisely from such a pre-order structure. That
was the approach of Carathéodory, then Giles and later Lieb and Yngvason, who pioneered
the idea of resource theories for thermodynamics [76, 77, 125, 126]. In their work, the set of
allowed transformations is implicitly assumed, but we work directly with an abstract state
space equipped with a preorder relation. They were largely inspired by classical, macroscopic
thermodynamics, as one may infer from the conditions imposed on the state space, but their
results can be applied to thermodynamics of small quantum systems [113]. Assuming that
there exist minimal resources that can be scaled arbitrarily and act as ‘currency’, the authors
obtain monotones for exact, single-shot state transformations. When applied to the pre-order
relation on classical states that emerges from thermal operations, these monotones become
single-shot versions of the free energy [113].

3.2.2. Starting from the set of free resources. In [118] general quantum resource theories are
characterized based on the set of free resources of each theory. Assuming that the set of free
states is well-behaved (for instance, that it is convex, and that the composition of two free
states is still a free state), they show that the relative entropy between a resource and the set of
free states is a monotone. This is because the relative entropy is contractive (non-increasing
under quantum operations); the same result applies to any contractive metric. Finally, they
find an expression for the asymptotic value of a resource in terms of this monotone: the
conversion rate between two resources is given by the ratio between their asymptotic value.

3.2.3. In category theory. Reference [16], and more recently [37] have generalized the
framework of resource theories to objects known as symmetric monoidal categories. These
can represent essentially any resource that can be composed (in the sense of combining copies
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of different resources, like tensoring states in quantum theory). The authors consider both
physical states and processes as possible resources. After obtaining the pre-order structure
from a set of allowed operations, resource theories can be classified according to several
parameters. For instance, the authors identify quantitative theories (where having more of a
resource helps, like for thermal operations) and qualitative ones (where it helps to have many
different resources). They find expressions for asymptotic conversion rates in different
regimes and, crucially, give varied examples of resource theories, within and beyond quantum
theory, showing just how general this concept is.

3.2.4. Resource theories of knowledge. In [127], emphasis is given to the subjective
knowledge of an observer. The framework introduced there allows us to embed macroscopic
descriptions of reality into microscopic ones, which in turn lets us switch between different
agents’ perspectives, and see how traditional large-scale thermodynamics can emerge from
quantum resource theories like thermal operations. It also allows us to combine and relate
different resource theories (like thermodynamics and LOCC), and to infer the structure of the
state space (like the existence of subsystems or correlations) from modularity and
commutativity of transformations.

3.3. Outlook

In the previous sections we identified several open problems. These can be grouped into two
main directions:

* Quantumness: coherence, catalysis and clocks. It remains to find optimal coherent
catalysts and clocks under realistic constraints (a generalization of [96]). This would give
us a better understanding of the thermodynamic power and limitations of coherent
quantum states. It would also allow us to account for all costs involved in state
transformations.

* Identifying realistic conditions. We have been very good at defining sets of allowed
transformations that are analogous to those of traditional thermodynamics, and recover
the same monotones (like the free energy) in the limit of large, uncorrelated systems. The
original spirit of thermodynamics, however, was to find transformations that were easy
and cheap to implement for experimenters—for instance, those whose cost did not scale
with the relevant parameters. In order to find meaningful resource theories for individual
quantum systems, it is again imperative to turn to concrete experimental settings and try
to identify easy and cheap transformations and resources. At this stage, it is not yet clear
whether these will correspond to thermal operations, time-independent Hamiltonians, or
another model of quantum thermodynamics—in fact it is possible that they vary
depending on the experimental realization, from superconducting qubits to ion traps.

4. Entanglement theory in thermodynamic settings

In the previous sections we have established how quantum information can be used to
understand the very foundation of thermodynamics, from the emergence of thermal states to
the resource theory of manipulating these with energy conserving unitaries. We have seen that
phrasing thermodynamics as a resource theory can elucidate the meaning of thermodynamic
quantities at the quantum scale, and how techniques originally developed for a resource
theory of communication can facilitate this endeavour. The motivation behind this approach is
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a very practical one: finding the ultimate limitations of achievable transformations under
restrictions that follow from the nature of the investigated system that naturally limits the set
of operations we can perform. As quantum information processing is becoming increasingly
applied, we also need to think about fundamental restrictions to quantum information itself,
emerging from unavoidable thermodynamic considerations. There has thus been an increased
interest in investigating scenarios of quantum information processing where thermodynamic
considerations cannot be ignored. From fundamental limitations to the creation of QIP
resources to their inherent work cost. In this section we try to give a brief overview over
recent developments in this intersection with a focus on the paradigmatic resource of QIP:
entanglement.

4.1. Correlations and entanglement under entropic restrictions

Entanglement theory is in itself one of the most prominent examples of resource theories.
Entanglement, a resource behind almost all tasks in quantum information processing, is hard
to create and once distributed can only decrease. Thus in entanglement theory classically
correlated states come for free and local operations are considered cheap, which singles out
entanglement as the resource to overcome such limitations. These limitations and resources
are of course very different to the resources and tasks explored in the previous sections. A
comprehensive comparison between the principles behind these and more general resource
theories is made in [128] and as examples of a more abstract treatment in [16].

Such resource theories are always designed to reflect specific physical settings, such as
LOCC [129] as a natural constraint for communication. It is therefore unavoidable that when
describing various physical circumstances these resource theories can be combined yielding
hybrid theories. One natural example is the desire to process quantum information in a
thermodynamic background. Ignoring limitations coming from available energies in a first
step this leads to the task of producing resources for computation (such as entanglement or
correlation) at a given entropy. Some of the first considerations in this direction were moti-
vated by the prospect of using nuclear magnetic resonance (NMR) for quantum computation.
Due to non-zero temperature, i.e. non-trivial restrictions on the entropy of the state, such
systems would always be fairly close to the maximally mixed state.

In this context the most natural question to ask, is whether a unitary transformation is
capable of entangling a given input state. As a precursor to studying the possibility of
entangling multipartite states, the complete solution for two qubits was found in [130] and
later decent bounds on bipartite systems of arbitrary dimension were presented in [131].

Another pathway was pursued by [132—134], where with NMR quantum computation in
mind, volumes of separable states around the maximally mixed state were identified. These
volumes imply that if any initial state is in close proximity of the maximally mixed state, there
can be no chance of ever creating entanglement in such states, as the distance from the
maximally mixed state is invariant under unitary transformations. Further improvements in
terms of limiting temperatures were obtained in [135].

The question of whether a given state can be entangled under certain entropy restrictions
clearly relies only on the eigenvalue spectrum of the considered state, as the best conceivable
operation creating entanglement is a unitary one (which leaves eigenvalues unchanged).
These questions were further pursued under the name of ‘separability from spectrum’ in
[136-138]. One of the main results important in the context of quantum thermodynamics is
the following: a state with eigenvalues \;, ordered by size, i.e. {\; > A;;} can be entangled
by an appropriate unitary if
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A > Ag—1 + 240 Aa—2 Mg (10)

More importantly, for 2 x m dimensional states, this condition is not only sufficient, but also
necessary [138].

Moving beyond the mere presence of entanglement in the unitary orbit of input states,
one encounters an intrinsic difficulty of properly quantifying the entanglement created. There
is a whole ‘zoo’ of entanglement measures [139, 140] and only in the bipartite case there is a
unique ‘currency’ known, i.e. a paradigmatic resource state from which all other states can be
created via LOCC (although recent progress has been made in the four qubit case, where it
has been shown that after exclusion of a measure zero set, such a set of resource states can
indeed be identified [141]).

In any case one can at least study general correlations with a clear operational inter-
pretation, such as the mutual information, which has been performed in [142-144]. In these
papers the authors have, among other things, identified minimally and maximally correlated
states in the unitary orbit of bipartite systems. It turns out that at least here the entropy poses
only a rather trivial restriction and for any d-dimensional state p a mutual information of
I,(A: B) = 2log,(d) — S(p) can be achieved via global unitary rotations.

Exploiting these results [145] continued to study the generation of correlations and
entanglement under entropic restrictions for multipartite systems. Inspired by the idea of
thermal states as a free resource, the authors consider a multipartite system initially in a
thermal state. They ask what is the highest temperature T, at which entanglement can still be
created, it scales with the dimension of the partitions and quantify the inherent cost in terms
average energy change (see example (4) for an exemplary two qubit energy cost). By
introducing concrete protocols, i.e. unitary operations, the authors show that bipartite
entanglement  generation across all partitions of n-qubits is possible iff
ksT/E < n/(2In(1 + ~/2)) and genuine multipartite entanglement across all parties can be
created if kgT/E < n/(21In(n)) + O /In(n)?).

4.2. Correlations and entanglement in a thermodynamic background

In the context of thermodynamics the previous subsection can be viewed as a very special
case of operating on closed systems with an unlimited external energy supply or a fully
degenerate Hamiltonian. As elaborated in section 4 of the review this does not encompass the
whole potential of thermodynamic transformations. If the necessary correlating unitary does
not conserve the total energy, we should account for the difference in average energy between
initial and final states. Taking into account also the average energy cost reveals an intrinsic
work value of correlations and entanglement in general. This fundamental fact was first
quantified in [145]).

Example 4. Entangling two qubits. Creating entanglement from thermal states will always
cost some energy. For the simplest case of entangling two qubits with energy gap E at zero
temperature one can find a closed expression, e.g. for the concurrence, in terms of the invested
average energy AE = W:

W W
CW) = E( — E)

Accounting for the average energy change in the unitary orbit of initial quantum states
however still does not encompass the whole potential of thermodynamic resource theories.
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Thermal operations on target states can also make use of a thermal bath at temperature 7" and
thus can also reduce the entropy of the target system. Disregarding energy costs in this
context of course yields the rather trivial result that any quantum information processing
resource can be produced, simply by cooling the system (close) to the ground state and then
performing the adequate global unitary operation on it. Taking into account the free energy
costs of correlating transformations, [146] has shown that every bit of correlation embodies an
intrinsic work value proportional to the temperature of the system. For mutual information
this yields a relation akin to Landauer’s principle for the work cost of creating correlations
Wcor

VVCO]' = kBTIp(A : B), (11)

and it implies a general free energy cost of entanglement that is bounded from above and
below for the bipartite case in [146]. All previous considerations are illustrated in figure 4.

That extractable work can be stored in correlations is by no means a purely quantum
phenomenon. Even classical correlations can store work in situations where local work
extraction is impossible. In [147] the quantum versus classical capacity for storing extractable
work purely in correlations was compared. For two qubits twice as much work can be stored
in entangled correlations as the best possible separable (or even classical, which turns out to
be the same) correlations admit (a fact that is also mentioned in [75] in a different setting).
However the difference between separably encoded work from correlations W, and the
maximally possible work in correlations W, scales as

h =1- 0w, 12)
max
i.e. the quantum advantage vanishes in the thermodynamic limit of large systems.

Concerning the extractable work from correlations one can also find seemingly contrary
results if the figure of merit changes. The above considerations apply only if the target is an
extraction of average energy or standard free energy, partially neglecting the details of the
work distribution arising in the receiving system (detailed considerations of such work dis-
tribution fluctuations will be discussed in section 6). One can just as well be interested in a
guaranteed amount of work. If that is the case one can arrive at more restrictions concerning
work extraction as also recently demonstrated in [117]. Curiously in [148] it was shown,
however, that these restrictions can be overcome by considering k initially uncorrelated
catalysts that build up correlations in the process. In that context one can extract more
deterministic work and can thus regard the stochastic independence of the input catalysts as a
resource for work extraction, which is quite contrary to the case considered before and the
thermodynamic limit.

A different, but very related, setting exploring work gain from correlations is studied in
the context of quantum feedback control. Here the task is rather to quantify the inevitable
work cost arising from information gain in the process of a measurement. As in order to
measure a system one needs to correlate with the system in question it follows intuitively that
this scenario will also always induce work cost related to bipartite correlations between the
system and the memory storing the information gain about the system. Here the work cost
coming purely from correlations was quantified in [144], building upon older results on the
inevitable work cost of quantum measurements [149-152] and Landauer’s principle. To
model the necessary feedback control, the authors included a general model of a quantum
memory upon which projective measurements can be performed. The authors also studied the
possible work gain from bipartite quantum states in this context. Denoting the state of the
memory as p,, the authors find an upper bound on the work gain (defined as the work
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Two systems, initially in local, product thermal states of temperature T, are
correlated using(a) any unitary [142],(b) a unitary changing the average energy
by at most AE [144] or(c) a unitary on the systems and another bath at the
same temperature 7' [145]. The local states of the two systems may heat up in
the process: AT is infinite in(a), a function of AE in(b) and forced to be zero
in(c). In general, for setting(b), the optimal conversion rate of average energy
into mutual information is still unknown.

Figure 4. Creating correlations between local thermal states.

extracted from both subsystems minus the work cost of the measurements and subsequent
erasure of the quantum memory) as

Woee < ksT (I,(A : B) — I,(A : Bloy)) — AF;(p). (13)

4.3. Thermodynamics under locality restrictions

In the previous subsections we have reviewed the prospect of creating quantum information
processing resources in a thermodynamic background. The other obvious connection between
the resource theories of entanglement and thermodynamics is taking the converse approach.
Here one is interested in thermodynamic operations under additional locality restrictions.

In [153] the difference between the extractable work from bipartite quantum states in
thermodynamics both with and without locality restrictions was studied. The resulting dif-
ference, called the work deficit, can be bounded via

A= maX[S(PA), S(PB)] - S(pAB)9 (14)

which for pure states coincides with entanglement of formation (or any other sensible choice
of entanglement measure that all reduce to the marginal entropy in case of pure states). In the
above equation it is assumed that bits which are sent down the communication channel are
treated as classical in the sense that they are only dephased once, and not again in a second
basis. This interplay led to subsequent investigations into the thermodynamic nature of
entanglement in [153], where analogies between irreversible operations in thermodynamics
and bound entanglement were drawn, and to concrete physical scenarios satisfying this bound
in [120].

4.4. Entanglement resources in thermodynamic tasks

Apart from resource theory inspired questions, one might study the role of informational
quantities through their inevitable appearance in thermodynamic operations at the quantum
level. For instance the role of entangling operations and entanglement generation in extracting
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work from multiple copies of passive states , i.e. states where no local work extraction is
possible [107, 108], has attracted some attention recently. The implied fact that global unitary
operations are required to extract work indicates some form of non-local resource being
involved in the process.

In general passive states are always diagonal in the energy eigenbasis [107, 108], which
implies that one starts and ends the protocols with diagonal states. In these scenarios the
individual batteries from which work is to be extracted are considered non-interacting,
directly implying the separability of initial and final states in these protocols. Nonetheless the
fact that local unitaries can never extract any work from copies of passive states directly
implies that entangling unitaries enable work extraction from such states [154]. In that sense
entangling power of unitaries can be seen as a resource for work extraction purposes (which
in conventional thermodynamic resource is of course considered a free operation).

In [155] the role of quantum resources in this context was further explored. While it is
true that the ability to perform entangling unitaries is required for this particular work
extraction problem, this does not imply that any entanglement is ever generated in the
process. In fact the whole procedure can dynamically be implemented without ever generating
the slightest bit of entanglement [155], however the most direct transformation can con-
siderably entangle the systems in the process. In [156] it was demonstrated that if the work
per unit time (power) is considered with cyclic operations in mind then a quantum advantage
for charging power can be achieved.

4.5. Using thermodynamics to reveal quantumness

That entanglement plays a special role in quantum many-body physics is a well established
fact that has received adequate attention in numerous publications (see e.g. [157] and the
extensive list of citations therein). In this topical review we want to at least mention a related
question that connects quantum thermodynamics directly with entanglement theory: the
possibility to use thermodynamic observables to reveal an underlying entanglement present in
the system. At zero temperature it is already known that many natural interaction Hamilto-
nians have entangled ground states (in fact often many low energy eigenstates even of local
Hamiltonians feature entanglement). This fact can be exploited to directly use the energy of a
system as an entanglement witness, even at non-zero temperatures [158]. Intuitively this can
be understood through the fact that a low average energy directly implies that the density
matrix is close to the entangled ground state. If this distance is sufficiently small that can
directly imply entanglement of the density matrix itself. The known results and open ques-
tions of this interplay including [159-166] are also discussed in the review [36]. Furthermore,
other macroscopic thermodynamic quantities can also serve as entanglement witnesses
through a similar intuition, such as e.g. the magnetic susceptibility [167] or the entropy [168].

4.6. Outlook

Resource theories always have their foundation in what we believe to be hard /impossible to
implement and what resources allow us to overcome such limitations. As such they always
only capture one specific aspect of the physical systems under investigation. The results
outlined in this section emphasize the fact that thermodynamic constraints have drastic
consequences for processing quantum information and that locality constraints will change
thermodynamic considerations at the quantum scale. One path to explore could now be a
consistent resource theory that adaptively quantifies possible resources from different
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restrictions. This would furthermore elucidate the exact role played by genuine quantum
effects, such as entanglement, in thermodynamics.

5. Quantum fluctuation relations and quantum information

5.1. Introduction

The phenomenological theory of thermodynamics successfully describes the equilibrium
properties of macroscopic systems ranging from refrigerators to black holes that is the domain
of the large and many. By extrapolating backwards, from the domain of the ‘many’ to the
‘few’, we venture further from equilibrium into a regime where both thermal and quantum
fluctuations begin to dominate and correlations proliferate. One may then ask the question—
what is an appropriate way to describe this blurry world which is dominated by deviations
from the average behaviour?

One way to describe the thermodynamics of small systems where fluctuations cannot be
ignored is by using the framework of stochastic thermodynamics [169]. In this approach the
basic objects of traditional statistical mechanics such as work and heat are treated as sto-
chastic random variables and hence characterized by probability distributions. Over the last
20 years various approaches have lead to sets of theorems and laws, beyond the linear
response regime, which have revitalized the already mature study of non-equilibrium statis-
tical mechanics. Central to these efforts are the fluctuation relations that connect the non-
equilibrium response of a system to its equilibrium properties. A wealth of results have been
uncovered in both the classical and the quantum regimes and the interested reader is directed
to the excellent reviews on the topics [21-23]. Here we focus on aspects of this approach that
have been specifically influenced by concepts in quantum information, or show promise for
symbiosis. We hope that by reviewing the existing contributions as well as suggesting pos-
sible research avenues, further cross fertilization of the fields will occur.

To begin with, it is useful to illustrate how the probability distributions of a thermo-
dynamic variable like work is defined. Consider a quantum system with a time-dependent
Hamiltonian H (A(¢)), parametrized by the externally controlled work parameter A(t). The
system is prepared in a thermal state by allowing it to equilibrate with a heat bath at inverse
temperature (3 for a fixed value of the work parameter A (r < t;) = A;. The initial state of the
system is therefore the Gibbs state

e BH )

T()\, ﬂ) = m

At t = t; the system-reservoir coupling is removed and a fixed, reversible protocol is
performed on the system taking the work parameter from its initial value ); to the final value
Ar at a later time ¢ = f#;. The initial and final Hamiltonians are defined by their spectral
decompositions

H\) =Y E, () (4,3,
n
and  HAp) =D _En(M\) 16,,)(0,]
respectively, where |1,) (¢,,)) is the nth (mth) eigenstate of the initial (final) Hamiltonian with

eigenvalue E,()\;), E,(A). The protocol connecting the initial and final Hamiltonians
generates the unitary evolution operator U (#;, t;), which in general has the form
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U, 1) = Lexp[if dr’ H()\(t'))], (15)

where T_, denotes the time-ordering operation. We stress here that, in this framework, one
typically assumes that the system is initially prepared in a thermal state but after the unitary
protocol the system is generally in a non-equilibrium state.

The work performed (or extracted) on (or from) the system as a consequence of the
protocol is defined by the outcomes of two projective energy measurements [170]. The first,
at t = t;, projects onto the eigenbasis of the initial Hamiltonian H (};), with the system in
thermal equilibrium. The system then evolves under the unitary operator U (, ;) before a
second projective measurement is made onto the eigenbasis of the final Hamiltonian H ()¢) at
t = t;. The joint probability of obtaining the outcome E, (});) for the initial measurement
followed by E,, (\¢) for the final one is easily shown to be

e BE.(A) )
m) = ———— U (ts, 5|0, 7. 16
p(n, m) ERS 1{&,| U (te, 119, (16)

Accordingly, the quantum work distribution is defined as
Pe(W) = p(n, m) §(W — [En(X) — E,(M) 1), a7

where ¢ is the Dirac delta function. For reasons which will become clear shortly we use the
subscript F to denote ‘forward’ protocol. Physically, equation (17) states that the work
distribution consists of the discrete number of allowed values for the work (E,, (A\¢) — E,(\))
weighted by the probability p(n, m) of measuring that value in a given realization of the
experiment. The quantum work distribution therefore encodes fluctuations in the measured
work arising from thermal statistics (first measurement) and from quantum measurement
statistics (second measurement).

In order to understand what is meant by a fluctuation theorem, we introduce a backward
process which is the time reversed protocol of the forward one previously defined. Now
Pg (W) is the work distribution corresponding to the backward process, in which the system is
prepared in the Gibbs state of the final Hamiltonian H (\¢) at ¢+ = 0 and subjected to the time-
reversed protocol that generates the evolution OU (¢;, #;)©', where O is the anti-unitary time-
reversal operator. It turns out that the following theorem holds, the Tasaki—Crooks relation
[171, 172],

Pr(W) — eBW-AF) (18)
Pg(—=W)

which shows that, for any closed quantum system undergoing an arbitrary non-equilibrium
transformation, the fluctuations in work are related to the equilibrium free energy difference
for the corresponding isothermal process between the equilibrium states 7()\;) and 7()\¢),

N 1n(3"“i)). (19)
8 Z3(Mp)

This relationship is further emphasized by a corollary to equation (18) known as the
Jarzynski equality [173],

[awPewye W — (o) — eiar (20)

which states that AF (of the corresponding isothermal process) can be extracted from by
measuring the exponentiated work. A straightforward application of Jensen’s inequality for
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convex functions allows one the retrieve the expected expression (W) > AF. The average
energetic deviation of a non-equilibrium process from the equivalent reversible isothermal
process is known as dissipated work

<W>diss = <W> — AF. 2D

Due to the Jarzynski equality this quantity is positive, (W )qss = 0. This can be also directly
seen from the Crooks relation, taking the logarithm of both sides of the equality in
equation (18) and integrating over the forward distribution we find

(X) = BUW) — AF) = K(Pp(W)||Pg(—W)), (22)

where K is the classical Kullback Leibler divergence and we have introduced the average
irreversible entropy change (3) corresponding to the dissipated work. Physically the
irreversible entropy change, in this context, would be the internal entropy generated due to the
non-equilibrium process which would manifest itself as an additional source of heat if an ideal
thermal bath would be reconnected to the system at the end of the protocol. In [174] it was
shown that the irreversible entropy change can also be expressed in terms of a quantum
relative entropy

(X) = D(ollT (A, B)) (23)

where o = U (t;, )7 (\;, B)UT(#;, 1) is the out of equilibrium state at the end of the protocol.
This is fully consistent with the open system treatment in [175].

5.2. Phase estimation schemes for extraction of quantum work and heat statistics

Surprisingly, the proposals to measure the characteristic perhaps one of the most important
contributions that ideas from quantum information have made to this field in statistical
mechanics is the experimental acquisition of statistics of work. In the classical setting con-
siderable progress has been made in the experimental extraction of the relevant stochastic
thermodynamic distributions to explore and verify the fluctuation theorems [23]. Up until
very recently, no such experimental progress had been made for quantum systems. A central
issue is the problem of building the quantum work distribution as it requires to make reliable
projective energy measurements on to the instantaneous energy eigenbasis of an evolving
quantum system [22, 170]. It was proposed in [176] that these measurements could be reliably
performed on a single trapped ion, an experiment that was recently performed [177].

Alternatives to the projective method have been proposed [178, 179], based on phase
estimation schemes, well known in quantum information and quantum optics [180]. In these
schemes, we couple our system to an ancillary system, and perform tomography on that
system. The spirit is very similar to the DQCI algorithm put forward in [181]. The char-
acteristic function of the work probability distribution (equation 24) can be obtained from the
ancilla, and the work statistics are then extracted by Fourier transform. The characteristic
function is defined as

Xp () = f AW &% P (W). (24)

The proposals to measure the characteristic function were first tested in the laboratory only
quite recently in a liquid state NMR setup [182]. This experiment is the first demonstration of
the work fluctuation theorems and extraction of work quantum statistics, and is expected to
inspire a new generation of experiments at the quantum level. Another interesting extension
of these schemes is to go beyond the closed system paradigm and to study open system
dynamics at and beyond the weak coupling limit. The first extensions have been proposed in
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[183—185]. In [186] the proposal outlined in [185] to measure the statistics of dissipated heat
was implemented in order to perform a study of the information to energy conversion in basic
quantum logic gates at the fundamental Landauer Limit.

Another interesting suggestion made to access the quantum work statistics is the use the
concept of a ‘positive operator valued measure’, or POVM [187], a well-known concept
within quantum information and quantum optics. A POVM is the most general way to
describe a measurement in a quantum system, with the advantage that it can always be seen as
a projective measurement on an enlarged system. In this work the authors show that by
introducing an appropriate ancilla that the POVM description allows the work distribution to
be efficiently sampled with just a single measurement in time. In this work it was suggested
that the algorithm proposed could be used, in combination with the fluctuation theorems, to
estimate the free energy of quantum states on a quantum computer. The scheme was recently
extended and developed in [188] along with a promising implementation using ultra-cold
atoms. This would be a promising avenue to explore work statistics in a many-body physics
setting where the statistics of work can be shown to have universal behaviour at critical
points [189].

5.3. Fluctuation relations with feedback, measurement and CPTP maps

The relationship between thermodynamics and the information processing is almost as old as
thermodynamics itself and is no where more dramatically manifested than by Maxwell’s
demon [2-6]. One way of understanding the demon paradox is by viewing the demon as
performing feedback control on the thermodynamic system. In this case the framework for
stochastic thermodynamics and the fluctuation theorems needs to be expanded. Building upon
previous work [151, 152], Sagawa and Ueda have generalized the Jarzynski equality to
incorporate the feedback mechanism [190, 191] for classical systems. This theoretical
breakthrough allowed for an experimental demonstration of information to energy conversion
in a system by means of of non-equilibrium feedback of a Brownian particle [192]. These
feedback based fluctuation theorems were further modified to incorporate both initial and final
correlations [193]. These works, in particular, highlight the pivotal role played by mutual
information in non-equilibrium thermodynamics [6].

The Sagawa—Ueda relations were generalized to quantum systems in [194]. For reasons
of pedagogy we will follow this approach here. In the work of Morikuni and Tasaki an
isolated quantum system is considered where an external agent has control of the Hamiltonian
parameters. The system is initialized in a canonical state, 7(3), and an initial projective
measurement of the energy is made whose outcome is E. The Hamiltonian is then changed
via a fixed protocol and evolves according to the unitary operator U. In the next stage a
projective measurement is performed with outcomes j = 1,...,n and described by a set of
projection operators 11 ..., II,,. Now the time evolution is conditioned on the outcome j so the
Hamiltonian is changed according to these outcomes. This is the feedback control stage.
Finally, one makes a projective measurement of the energy of the final Hamiltonian with
outcome E/. In this setting it is shown that

(ePW-DF)y — o (25)

where W = W, = EQ — Ek/ is the work and AF is the free energy difference between the
initial state and the canonical state corresponding to the final value of the Hamiltonian H/. We
see that in this feedback controlled scenario a new term enters on the right hand side. A
straightforward calculation shows that this term evaluates as v = > u(ILU JTT(ﬁ) U;1L;]. This
v quantity is shown in [190, 194] to be related to the efficiency of the demon in making use of
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the information it acquires during the feedback process. When it becomes less than one it
provides an example of a failed demon who did not make a good use of the information
acquired. On the other hand it can become larger than one indicating that the feedback is
working efficiently. Another relation discovered by Sagawa and Ueda and quantized by
Morkikuni and Taskaki concerns almost the same protocol as just explained only now
classical errors are made in the intermediate measurement stage. Again let the intermediate
measurement be described by II;,...,II, which yield the result j but the controller
misinterprets the result as j with a certain probability. In this framework another generalized
fluctuation theorem can be derived

<e,8(W7AF71)> =1, (26)

where [ is the mutual information between the set of measurement outcomes the demon
actually records and what is the true result of the projection. These feedback fluctuation
theorems for quantum systems were further generalized to the situation when a memory
system is explicitly accounted for in [144] and shed light on the amount of thermodynamic
work which can be gained from entanglement. In addition to feedback, fluctuation theorems
were investigated under continuous monitoring [195, 196] and analysed for general
measurements [197, 198].

A recent series of papers have analysed fluctuation-like relations from the operational
viewpoint employing the full machinery of trace-preserving completely positive maps. In
[199] the formalism is used to give an alternative derivation of the Holevo bound [200]. In
[201] an information-theoretical Jarzynski equality was derived. It was found that fluctuation
relations can be derived if the map generated by the open dynamics obeys the unital con-
dition. This has been connected to the breakdown of micro-reversibility for non-unital
quantum channels [202-205]. In [206] the authors analysed the statistics of heat dissipated in
a general protocol and found that the approach can be used to derive a lower bound on the
heat dissipated for non-unital channels. Recently this bound has been used to investigate the
connection with the build up of multipartite correlations in collisional models [207].

5.4. Entropy production, relative entropy and correlations

With the surge of interest in the thermodynamics of quantum systems and the development of
quantum fluctuation relations, research has been directed to microscopic expressions for
entropy production. In formulating thermodynamics for non-equilibrium quantum systems,
the relative entropy plays a central role [191]. As first pointed out in [208] this is due to its
close relationship with the free energy of a quantum state. The relative entropy also plays a
central role in quantum information theory, in particular, in the geometric picture of entan-
glement and general quantum and classical correlations [209, 210]. In the non-equilibrium
formulation of thermodynamics [22] it is omnipresent for the description of irreversible
entropy production in both closed [174] and open driven quantum systems [211] (see also
[212]). One may then wonder if there exists a relationship between the entropy produced by
operations that generate or delete correlations in a quantum state and the measures for
correlations in that state? Given the youthful nature of the field the question is largely
unanswered but some progress in this direction has been made.

The relationship between the relative entropy of entanglement and the dissipated work
was first proposed as an entanglement witness in [213]. Going beyond the geometric approach
a functional relationship between the entanglement generated in a chain of oscillators and the
work dissipated was explored in [214] and also later for more general quantum correlations
[215]. In an open systems framework it was shown that the irreversible entropy production
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maybe attributed to the total correlations between the system and the reservoir [216] (we note
that this derivation is entirely analogous to the formulation of the Landauer principle put
forward by in [115]). The exchange fluctuation relation and the consequences for correlated
quantum systems were studied in [217].

5.5. Outlook

As fluctuation theorems are exact results, valid for arbitrary non-equilibrium dynamics, they
are currently being used to understand the nonlinear transport of energy, heat and even
information in quantum technologies. This is a relatively new research avenue and the
applications of quantum fluctuation theorems in other fields such as condensed matter phy-
sics, quantum optics and quantum information theory are in their infancy. Ultimately, the
hope would be that they provide a unifying framework to understand the relationship between
information and energy in non-equilibrium quantum systems. Ultimately one would like to
form a picture of information thermodynamics of quantum systems under general non-
equilibrium conditions.

As we have seen above, quantum phase estimation, a central protocol in quantum
information theory, has been applied successfully to extract work statistics from a small non-
equilibrium quantum system and perhaps other such unexpected interdisciplinary links will
emerge. For example one wonders if existing experimental schemes could be modified to deal
with situations dealing with non-passive initial states so as to study maximal work extraction
problems and also to extend to more complicated many-body and open system scenarios.

In [119, 218, 219] the first steps towards unification of the work statistics and fluctuation
theorems approach to thermodynamics and the single shot statistical mechanics approaches
mentioned have been taken (see section 4). We are confident that other links will emerge
between various approaches in the not so distant future.

6. Quantum thermal machines

In this final brief section of the review we end by considering the area of quantum ther-
modynamics concerning quantum thermal machines, that is quantum versions of heat engines
or refrigerators. We shall overview the extent to which quantum entanglement and correla-
tions are relevant to their operation.

Whereas in almost all of the above the situation comprised of only one thermal bath and
systems in contact with it, in this section our interest is in situations involving two (or more)
thermal baths. Now, there are two regimes which one can focus on: the primary one is usually
the cyclic behaviour of systems interacting with the baths, or alternatively the steady state
behaviour that is characterized by the currents of heat or work that can be maintained in the
long time limit. The second regime is the transient one, and how the system reaches
stationarity.

One way to think of the present situation is that the second thermal bath is the system out
of equilibrium with respect to the first bath, and the goal is to produce resources (work, or a
steady state current out of a cold bath) at optimal rates. From this perspective, the quantum
machine plays the role of the ‘bridge’ or the ‘mediator’ which facilitates the operation of the
larger thermal machine.

The history of quantum thermal machines is a long one, going back to the sixties with the
invention of the maser, which can be seen as a heat engine [220], and received much attention
over the following decades. A complete overview of the literature in this direction is far
beyond the scope of the present review; however excellent recent overviews can be found in
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[31-33]. In the present context, one important message from this body of work is that thermal
machines comprised of as little as a single qutrit (3 level system), or of 2 or 3 qubits, can be
constructed, that moreover can approach Carnot efficiency (the maximal possible efficiency
of any machine). It is thus plausible that they may ultimately become important from the
perspective of nanotechnology and implementations of quantum information processing
devices. As such a full understanding of their quantum behaviour, including the correlations
they can build up, is important. Here we review specifically those studies concerned with the
role of entanglement and quantum coherence in the functioning of such small quantum
thermal machines, both at the level of the machine, as well as in the bath, if pre-processing
operations are allowed. We also look at the role of coherence in the transient behaviour when
the refrigerator is first switched on. We review a recent proposal for a witness that quantum
machines are provably outperforming their classical counterparts. Finally, we look at the idea
of using thermal machines as a means of entanglement generation (switching the focus away
from the traditions resources of work or heat currents).

A related idea is that of algorithmic cooling, which we summarize in example 5, and
which was recently reviewed in [221].

6.1. Absorption refrigerators

The first machine we shall look at is a quantum model of an absorption refrigerator, a
refrigerator which is not run by a supply of external work (which is the situation most
customarily considered), but rather run by a source of heat. An absorption refrigerator is thus
a device connected to three thermal reservoirs; a ‘cold’ reservoir at temperature B¢ from
which heat will be extracted; a ‘hot’ reservoir at inverse temperature Gy, which provides the
supply of energy into the machine; and finally a ‘room temperature’ reservoir at temperature
Or into which heat (and entropy) will be discarded. The goal is to cool down the cold
reservoir (i.e. extract heat from it).

There are a number of different figures of merit that one can consider to quantify the
performance of the machine. The most commonly considered is the coefficient of
performance COP = Q¢/Qpy, where Q¢ and Qy are respectively the heat currents flowing out
of the cold the hot reservoirs (the COP is the analogous quantity to the efficiency for an
absorption refrigerator; since the COP can be larger than 1 it cannot be thought of directly as
an efficiency). The famous result of Carnot [222], a statement of the second law of ther-
modynamics, is that the efficiency (or COP) of all thermal machines is bounded as a function
of the reservoir temperatures. In particular, for the specific case of an absorption refrigerator
we have COP < (6r — Bu)/(Bc — Br). Other relevant figures of merit are the power Q¢
(i.e. neglecting how efficient the process is), the COP when running at maximal power, and
the minimal attainable stationary temperature 3¢ for a cold object in contact with the bath.

Below we give a brief outline of the model under consideration, full details of which can
be found in [223, 224]. Consider three qubits, each one in thermal contact with one of the
three thermal baths, with local Hamiltonians H; = E; |1){1], for i = C, R, H chosen such
that Eg = E¢ + Ey to ensure that the system has a degenerate subspace of energy Er formed
by the states |010) and |101) (where we use the order C—-R-H for the three qubits). In this
subspace the interaction Hamiltonian H;,; = g(|010)(101| + [101){010]) is placed, which
mediates the transfer of energy. A schematic representation of this fridge can be found in
figure 5.

Example 5. Algorithmic cooling. Consider a collection of n qubits, all at inverse
temperature 3, with corresponding populations in the ground and excited states p and
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Schematic diagram of a three qubit autonomous refrigerator (inside circle),
coupled to three thermal reservoirs. The interaction Hamiltonian is represented
by the green and orange arrows.

Figure 5. Three-qubit fridge.

(1 — p) respectively. The goal of algorithmic cooling is to bring m qubits to the ground state
by an arbitrary unitary transformation. A fundamental upper bound can be placed on m,
purely by entropic considerations. The initial entropy is nS(7(8) = nH (p), where
H(p) = —plog,p — (1 — p)log,(1 — p) is the binary Shannon entropy. Since unitary
transformations do not change the entropy, this easily leads to the upper bound on m,

m<n(l —H(p)) 27)

which would be achieved if the remaining n — m qubits are all left at infinite temperature
(maximally mixed state) with entropy S (7(0)) = 1. In [225] it was shown that as n tends to
infinity this fundamental limit can be approached using an algorithm which uses O (n log,n)
unitary gate operations. It was later realized that given access to an external bath this limit can
be surpassed: the qubits which end this protocol at infinite temperature can be ‘refreshed’ to
temperature 5 and the protocol can be run again on the remaining (n — m) qubits, for
example [226]. This is referred to as heat-bath algorithmic cooling.

In order to understand the basic principle, one can focus instead on three qubits and
assume that the first is the one which is to be cooled down (now not to zero temperature, but
any colder temperature). Let us consider the populations of the two states [100) and |011),
which are p?(1 — p) and p(1 — p)? respectively. The state |100), in which qubit one is
excited (and therefore ‘hot’) has more population than the state |011), where qubit one is in
the ground state (and therefore ‘cold’). Thus, by swapping the population of these two states
the first qubit is cooled down. Indeed, after the application of such a unitary, the final
population p’ in the ground state of the first qubit is

pP=p+Q@p—Dpl—p (28)

which is greater than p whenever (2p — 1) > 0, i.e. whenever the first qubit was at a positive
temperature. Finally, a unitary which implements |011) < |100) whilst leaving all other
energy eigenstates the same can easily be constructed from the CNOT and Toffoli gates as
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A recent review giving many more details about algorithmic cooling can be found
in [221].

6.1.1. Stationary behaviour. Assuming the weak coupling regime between the qubits and the
baths, the dynamics can be modelled using a time-independent Lindblad master equation
p = L(p) (with £ the Linbladian, i.e. the most general generator of time-homogeneous,
Markovian dynamics). The stationary solution p*, satisfying £(p*) = 0, can be shown to
correspond to an absorption refrigerator if the parameters are chosen appropriately, i.e. such
that 3% > B¢, where B¢ is the stationary inverse temperature of the cold qubit.

From the point of view of quantum information, the basic questions about this steady
state are (i) whether quantum correlations (for example entanglement) are present in the
stationary state, and (ii) if yes, whether they are important for the operation, or merely a by-
product of quantum evolution. These questions were addressed in [223, 224].

In [224] quantum correlations in the form of discord were studied. The quantum discord
D(AB), :=1(A: B), — I(A : B),, with o the state after a minimally disturbing measurement
on Bob, is a form of quantum correlation weaker than entanglement [227, 228]. The authors
studied quantum discord between numerous inequivalent partitions of the system. The most
interesting results were obtained when the discord is calculated between the cold qubit (the
qubit which is being cooled) and the relevant subspace of the two remaining qubits (that
singled out by the interaction Hamiltonian H;,). They found that discord is always present,
but they found no relationship between the amount of discord present and the rate at which
heat was extracted from the cold bath. Specifically, to obtain this result they studied the
behaviour of discord as a function of the energy spacing E¢ of the cold qubit. Whilst both
quantities typically exhibited local maxima as E- was varied, these maxima failed to coincide.

In [223] the focus was instead on the entanglement maintained in the steady state. First, if
the machine is operating close to the maximal Carnot limit then the state is necessarily fully
separable, i.e. a convex combination of product states of the three qubits. Conversely,
operating far from this regime every type of multipartite entanglement can be found in the
stationary state. In particular, there are regimes where entanglement is generated across any
fixed bipartition, and even genuine multipartite entanglement can be found, demonstrating
that the state has no biseparable decomposition. Here it must be stressed that the amount of
entanglement found was small, but that this should be expected due to the weak inter-qubit
coupling.

Finally, it was also shown that there appears to be a link between the amount of
entanglement generated in the partition R|CH and the so-called cooling advantage that
entangled machines have compared to separable ones. In particular, the cooling advantage
was defined as the difference between the minimal possible temperatures that could be
achieved with either separable or entangled refrigerators. More precisely, by optimizing the
stationary temperature 3% of the cold qubit, varying the Hamiltonian of the machine qubits
and their couplings to the baths (at fixed temperatures). It was shown that arbitrary machines
(i.e. ones allowed to be entangled) could outperform ones which were additionally
constrained to be separable. Moreover, the advantage was found to be a function only of the
amount of entanglement generated across the R|CH partition. One point of interest is that this
is the bipartition of energy entering versus energy leaving the machine, thus suggesting a
connection between the transport properties of the machine and the entanglement.
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6.1.2. Transient behaviour. Instead of looking at the steady state behaviour, one may also
consider the transient behaviour. Such questions are relevant when one is interested in
running a small number of cooling cycles in order to cool down the system as fast as possible.
Alternatively, if one is thinking of initializing a system for some other use, the transient
regime might also be of interest for quicker initialization. Intuitively, since the evolution
between the qubits is coherent, one might expect the local populations to undergo Rabi
oscillations, and hence by running for precise times lower temperatures may be achievable in
a transient regime (as the qubits continuous cool down and heat up).

This is precisely what was shown in [229, 230]. More precisely, in [230] the authors
study the Markovian dynamics with weak inter-qubit coupling g (relative to the relaxation
rates, as in the above subsection), while in [229] the authors considered additionally
Markovian dynamics with strong inter-qubit coupling, and band-limited non-Markovian baths
(modelled with a one-qubit memory for each machine qubit). Taking as the natural initial state
the product state, whereby each qubit is initially at the same temperature as the bath, both
numerically study the transient behaviour of the temperature of the cold qubit as the system
approaches stationarity. While in the weak interaction case no Rabi oscillations are observed
(since the system is effectively over-damped), in the strong-interaction case Rabi oscillations
indeed take place, with period approximately 27/g. This demonstrates that coherent
oscillations offer an advantage for cooling. A more complicated behaviour due to memory
effects is also observed in the non-Markovian case in [229], but nevertheless the system can
be seen to pass through much colder temperatures during its transient behaviour. In [230] it
was also shown that if the couplings are chosen appropriately, (in particular such that the
weakest coupling is to the hot reservoir), then the system remains for a long time at a
temperature below the stationary temperature, in particular without oscillating above it. This
demonstrates a particular stable regime for the preparation of the system at temperatures
below its stationary temperature.

In order to explore more the advantage offered by coherence, [229] also considered
varying the initial state, by altering the coherence in the subspace where the Hamiltonian
operates. Interestingly, with only a small amount of initial coherence, even when considering
case (a) of weak-interaction dynamics, oscillations in the temperature are seen, again allowing
for cooling below the stationary temperature. In the other two cases, the magnitude of the
oscillations is also seen to increase (i.e. the system achieves lower temperatures transiently),
demonstrating an advantage in all situations.

Finally, in [230] the amount of entanglement that is generated in the transient regime was
also studied. Focusing on either genuine multipartite entanglement, or entanglement across
the partition R|CH, i.e. the one corresponding to energy-in versus energy out (as studied in
[223]), considerably more entanglement can be generated in the transient regime.

6.2. Reservoir engineering

As we have seen in previous sections of the review, thermals states are naturally considered as
a free resource which can be utilized and manipulated. Likewise, the ubiquity of thermal
machines is that having access to two large thermal reservoirs can also be considered as
something essentially free, and thermal machines consider ways of utilizing these resources.

One interesting avenue is to consider that any transformation of a thermal reservoir which
can ‘easily’ be carried out can also be considered to be free, as an idealization, and this
motivates the idea of considering thermal machines which run between engineered reservoirs,
assuming that the engineering was an easy to perform transformation. In the present context,
when one has sufficient control over (part of) the reservoir, then the engineering can be at the
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quantum level. Here again we are interested specifically in the role that quantum correlations
engineered in the bath have on the functioning of quantum thermal machines.

In [231, 232] reservoir engineering in the form of squeezing is considered, since
squeezing is relatively easy to carry out, and is furthermore known to offer quantum
advantages in other contexts in quantum information. That is the reservoir, instead of con-
sisting of a large collection of modes in thermal states at inverse temperature 3y, are in fact
squeezed thermal states (at the same temperature). More precisely, the squeezing operator is
Ug = exp((ra* — r*at?)/2) with a and «' the annihilation and creation operators respec-
tively, and the squeezed thermal state (of a given mode, i.e. a harmonic oscillator) is
U7 (B) U:q. Whereas normally the variances of the quadratures (x = (a + a')/2 and
p = (a — a")/2i) are symmetric, the squeezed modes become asymmetric, with the former
amplified by the factor ¢, and the latter shrunk by e~". The important point is that a system
placed in thermal contact with such a squeezed reservoir will not thermalize towards a thermal
state at (3, but rather to a squeezed thermal state, which has the same average number of
photons as a thermal state at temperature 3(r) < (. That is, in terms of average number of
photons, a squeezed thermal state appears ‘hotter’ than a thermal bath.

Starting first with [232], a model of an absorption refrigerators is considered, identical to
the one outlined in the previous section. Here, in accordance with the above, in the weak
coupling regime the effect of the reservoir engineering amounts to modifying the Linbladian
L, such that the term corresponding to the hot reservoir Ly transforms to Ly (r), where this
now generates dissipation towards the squeezed thermal state at Oy (r) . They show that the
maximal COP that the refrigerator can approach becomes

n(r) = Br — Bu(r) >770:6R_ﬂl-1. 29)

Bc — Br Be — Br
That is, the COP overcomes the Carnot limit that bounds the COP of any absorption
refrigerator operating between baths at B¢, Or and [y, if reservoir engineering is not carried
out. Thus if reservoir engineering is more readily available than a hotter ‘hot’ bath, then this
approach clearly provides an advantage in terms of the COP.

In [231] a different model was considered, this time a quantum heat engine operating a
quantum Otto cycle, a time dependent cycle, comprising two expansion stages (changing the
Hamiltonian of the system) and two thermalization stages. The system considered comprised
of a single harmonic oscillator, with initial spacing E,. While uncoupled to any environment,
the first stage is an expansion, whereby E; — E, > Ej, i.e. the Hamiltonian is changed in
time. In the second stage the system is then placed in contact with a squeezed hot reservoir
(this is the stage which differs from a standard Otto cycle, where an unsqueezed hot reservoir
is used). After disconnection, the third stage is a compression stage, bringing the spacing back
from E, to E;. Finally, the system is placed in contact with a cold (unsqueezed) reservoir, in
order to thermalize at the cold temperature. This cycle is summarized in figure 6. The authors
perform an analysis of the system and similarly show that the maximum efficiency of the
engine exceeds the Carnot efficiency (of the Otto cycle, n = Ou/Bc). Moreover, if one
considers the efficiency at maximum power, then this can also be surpassed, and as the
squeezing parameter becomes large, the efficiency at maximum power approaches unity.

Finally, we stress that these results do not constitute a violation of the second law, since
they consider a scenario outside the regime of applicability of the Carnot limit (much in the
same way that a regular car engine, consuming fuel, does not violate the second law, since it
is also outside the regime of applicability). Conversely, it is interesting that the net effect of
squeezing appears to be as if the hot reservoir has been heated to a temperature Sy (r), and
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Schematic diagram of a quantum Otto engine, depicting only a single pair
of levels, which can represent either a qubit, or the spacing of a harmonic
oscillator. The four stages are (I) expansion from E; to Es. (II) contact with
a hot thermal reservoir. (III) compression from Fs to Ey. (IV) contact with a
cold thermal reservoir.

Figure 6. Quantum Otto engine.

that the performance of the machines is bounded exactly by the Carnot limit with respect to
this new temperature.

6.3. Quantum thermodynamic signatures

One way to differentiate between a system which is genuinely using quantum effects and one
which is only using the formal structure of quantum mechanics (the discreteness of energy
levels, for example) is to devise signatures, or witnesses, for quantum behaviour. This is
similar to what is done in entanglement theory, or in Bell nonlocality, where one finds
witnesses which certify that entanglement was present, since no separable quantum state
could pass a certain test. An interesting question is whether one can find analogous witnesses
in a quantum thermodynamics setting. This is what was proposed in [233] in the form of
Quantum thermodynamic signatures.

In more detail, the main idea of [233] is to find a threshold on the power of a thermal
machine which would be impossible to achieve for a machine which is ‘classical’. The
authors take as the minimal set of requirements for a machine to be considered classical (i)
that it’s operation can be fully described using population dynamics (i.e. as a rate equation
among the populations in the energy eigenbasis); (ii) that the energy level structure and
coupling strengths are unaltered compared to quantum model under comparison; (iii) that no
new sources of heat or work are introduced. A way to satisfy the above three constraints is to
add pure de-phasing noise in the energy eigenbasis on top of the dissipative dynamics of the
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quantum model (arising from the interaction with the thermal reservoirs). One can then
compare models with and without de-phasing noise, and ask whether the additional noise
places an upper bound on the power of the machine.

For simplicity in presentation, in what follows we will focus here on the results obtained
for the four-stage qubit Otto heat engine, similar to the one described in the previous sub-
section (except now with a qubit in place of a harmonic oscillator). We note that the authors
show that the same results hold for a two-stage engine [234] and for continuous time engines
[25], as well as for refrigerators and heat pumps. As an aside, the reason why the result holds
for all three models is because [233] also proves that in the regime of weak-coupling to the
bath, and weak driving, all three types of engine can be shown to be formally equivalent,
producing the same transient and steady state behaviour at the level of individual cycles.

It is shown that a state independent bound can be placed on the power of a classical
machine which is proportional to the duration of a single cycle of the engine 7.y, as long as
the so-called ‘engine-action’ s is small, where the engine action is the product of the duration
7 and energy scale (as measured by the operator norm of each term appearing in the Master
equation). They demonstrate that there is a regime where a quantum engine (i.e. one without
additional dephasing) can provably outperform the corresponding classical machine, with
powers an order of magnitude larger in the former case.

6.4. Stationary entanglement

Entanglement is understood to be a fragile property of quantum states, that is one typically
expects that noise will destroy the entanglement in a quantum state. Much effort has been
invested in investigating and devising ways in which one can counter the effects of noise, and
maintain entanglement in a system, such as quantum error correction, dynamical decoupling,
decoherence free subspaces, to name but a few.

In the first subsection we saw that the non-equilibrium steady state of autonomous
quantum thermal machines can be entangled. If one thus focuses not on their thermodynamic
functioning, but rather on their entanglement functioning, we see that whenever a thermal
machine reaches a steady state which is entangled, this constitutes a way of generating stead
state entanglement, merely through dissipative interactions with a number of thermal envir-
onments at differing temperatures.

Furthermore, if the interest is only in steady state entanglement generation, then it is not
even necessary that the machine perform any standard thermodynamic task, and can in fact
simply be a bridge between two reservoirs, allowing the steady flow of heat from hot to cold
such that the stationary state of the bridge is necessarily entangled. This is precisely the
situation which was first considered in [235], where the minimal system of two qubits
interacting with two baths at temperatures Gy and G was considered in the weak coupling
(Markovian) regime. Numerous variants were then discussed: in [236-240] different aspects
of the dynamical approach to the steady state were analysed (assuming non-Markovian
dynamics, the rotating wave approximation, etc); in [241, 242] a 3 qubit bridge was con-
sidered; in [243] the stationary discord was also studied; in [244, 245] geometric and di-
electric properties of the environment were considered, and in [246] superconducting flux
qubits and semiconductor double quantum dot implementations were explored.

Focusing on the simplest possible example, that of the two qubit bridge, the take home
message of this line of investigation is that this is a viable means to generate stationary
entanglement. In particular the implementations considered in [246] suggest that in experi-
mentally accessible situations steady state entanglement can indeed be maintained at a level
which might be usable to then later distill.
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6.5. Outlook

We have seen in this section a range of results concerning quantum thermal machines,
focusing primarily on the quantum correlations and entanglement present in the machine, as
well as other signatures of quantumness. Although we have focused on the progress that has
been achieved so far, there are a number of directions which should be explored in further
work to more fully understand the role of quantum information for quantum thermal
machines.

First of all, the main playground of study in this section has been the weak-coupling
regime, where the machine is in weak thermal contact with the thermal reservoirs. It is
important and interesting to ask what happens outside of this regime, when the thermal baths
are strongly coupled to the machine. On the one hand, intuition suggests that stronger cou-
pling corresponds to more noise, which will be detrimental to fragile quantum correlations.
On the other hand, stronger driving might lead to more pronounced effects. As such, the
interplay between noise and driving needs to be better understood.

Second, we have seen that quantum signatures, either in terms of entanglement or
coherence, can be constructed, which show that there is more to quantum thermal machines
than just the discreteness of the energy levels. Here, it would be advantageous to have more
examples of quantum signatures, applicable in as wide a range of scenarios as possible. An
experimental demonstration of a quantum signature would also be a great development
concerning the implementation of thermal machines.

Finally, thinking of cooling as a form of error correction, it is interesting to know if ideas
from quantum thermal machines can be incorporated directly into quantum technologies as a
way to fight decoherence. This would be as an alternative to standard quantum error cor-
rection ideas, and an understanding of how they fit alongside each other could be beneficial
from both perspectives.

7. Final remarks

Ideas coming from quantum information theory have helped us understand questions, both
fundamental and applied, about the thermodynamic behaviour of systems operating at and
below the verge at which quantum effects begin to proliferate. In this review we have given
an overview of these insights. We have seen that they have been both in the form of technical
contributions, for example with new mathematical tools for old problems, such as the
equilibration problem, and also in the form of conceptual contributions, like the resource
theory approach to quantum thermodynamics.

Although quantum information is only one of the many fields currently contributing to
quantum thermodynamics, we expect its role to become more important as the field grows and
matures. Indeed, we believe that placing information as a central concept, just as Maxwell did
when his demon was born, will lead to a deeper understanding of many active areas of
physics research beyond quantum thermodynamics.
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